Math, asked by sangamithraa8966, 17 days ago

if ATA-1 is symmetric then P.T=(AT)2​

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

 \sf{If \: \: {A}^{T} {A}^{ - 1} \: is \: symmetric \: \: then \: \: { A}^{2} = }

EVALUATION

Here it is given that

 \sf{ {A}^{T} {A}^{ - 1} \: is \: symmetric \: \: }

 \sf{ \implies \: {({A}^{T} {A}^{ - 1})}^{T} = {A}^{T} {A}^{ - 1} }

 \sf{ \implies \: {({A}^{ - 1})}^{T} {({A}^{T} )}^{T}= {A}^{T} {A}^{ - 1} }

 \sf{ \implies \: {({A}^{ - 1})}^{T} A= {A}^{T} {A}^{ - 1} \: \: \bigg[\because \: \: {({A}^{T} )}^{T} = A\bigg]}

 \sf{ \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T} {A}^{ - 1} A\: \: }

 \sf{ \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T}I \: \: \bigg[\because \: \: {{A}^{ - 1} } A= I \: \bigg]}

 \sf{ \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T}}

 \sf{ \implies \: {({A}^{ - 1})}^{T} {A }^{2} = {A}^{T}}

 \sf{ \implies \: {A}^{T}{({A}^{ - 1})}^{T} {A }^{2} ={A}^{T} {A}^{T}}

 \sf{ \implies \: {A}^{T}{({A}^{ T})}^{ - 1} {A }^{2} ={A}^{T} {A}^{T}} \: \bigg[ \because \: {({A}^{ T})}^{ - 1} = {({A}^{ - 1})}^{T} \bigg]

 \sf{ \implies \: I.{A }^{2} ={({A}^{T})}^{2} \: \: \: \: \bigg[ \: \because \:{A}^{T}{({A}^{ T})}^{ - 1} = I\bigg]}

 \sf{ \implies \: {A }^{2} ={({A}^{T})}^{2} }

FINAL ANSWER

 \boxed{ \: \: \: \sf{ \: {A }^{2} ={({A}^{T})}^{2} } \: \: \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is

https://brainly.in/question/28455441

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

Similar questions