Math, asked by akshayaselvi49, 1 month ago

If ATA-1 is symmetric then P.T=(At)2​

Answers

Answered by pulakmath007
4

SOLUTION

TO DETERMINE

 \sf{If \:  \:  {A}^{T} {A}^{ - 1}  \: is \: symmetric \:  \: then  \:  \:  { A}^{2} =  }

EVALUATION

Here it is given that

 \sf{ {A}^{T} {A}^{ - 1}  \: is \: symmetric \:  \:  }

 \sf{  \implies \: {({A}^{T} {A}^{ - 1})}^{T}  = {A}^{T} {A}^{ - 1} }

 \sf{  \implies \: {({A}^{ - 1})}^{T}  {({A}^{T} )}^{T}= {A}^{T} {A}^{ - 1} }

 \sf{  \implies \: {({A}^{ - 1})}^{T} A= {A}^{T} {A}^{ - 1}  \:  \: \bigg[\because \:  \:  {({A}^{T} )}^{T} = A\bigg]}

 \sf{  \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T} {A}^{ - 1}  A\:  \:  }

 \sf{  \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T}I \:  \:  \bigg[\because \:  \:  {{A}^{ - 1} } A= I \: \bigg]}

 \sf{  \implies \: {({A}^{ - 1})}^{T} AA= {A}^{T}}

 \sf{  \implies \: {({A}^{ - 1})}^{T} {A }^{2} = {A}^{T}}

 \sf{  \implies \: {A}^{T}{({A}^{ - 1})}^{T} {A }^{2} ={A}^{T} {A}^{T}}

 \sf{  \implies \: {A}^{T}{({A}^{ T})}^{ - 1} {A }^{2} ={A}^{T} {A}^{T}} \:  \bigg[ \because \: {({A}^{ T})}^{ - 1}  = {({A}^{ - 1})}^{T} \bigg]

 \sf{  \implies \: I.{A }^{2} ={({A}^{T})}^{2} \:  \:  \:  \: \bigg[ \:  \because \:{A}^{T}{({A}^{ T})}^{ - 1}   = I\bigg]}

 \sf{  \implies \: {A }^{2} ={({A}^{T})}^{2} }

FINAL ANSWER

 \boxed{ \:  \:  \:  \sf{  \: {A }^{2} ={({A}^{T})}^{2} } \:  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is 

https://brainly.in/question/28455441

2. If [1 2 3] B = [34], then the order of the matrix B is

https://brainly.in/question/9030091

Similar questions