Math, asked by vardhon, 1 year ago

if ax^2+2hxy+by^2=1 then (d^2y)/(dx^2)=(h^2-ab)/(hx+by)^3​

Answers

Answered by Swarup1998
10

\quad\quad\quad\quad\bold{\dfrac{d^{2}y}{dx^{2}}=\dfrac{h^{2}-ab}{(hx+by)^{3}}}

Step-by-step explanation:

Given, \mathrm{ax^{2}+2hxy+by^{2}=1}

Differentiating both sides w. r. to x, we get

\quad\mathrm{\dfrac{d}{dx}(ax^{2}+2hxy+by^{2})=\dfrac{d}{dx}(1)}

\to \mathrm{2ax+2hx\:\dfrac{dy}{dx}+2hy+2by\:\dfrac{dy}{dx}=0}

\to \mathrm{(hx+by)\:\dfrac{dy}{dx}=-ax-hy\quad .....(1)}

Again, differentiating both sides w. r. to x, we get

\quad\mathrm{\dfrac{d}{dx}\big[(hx+by)\:\dfrac{dy}{dx}\big]=\dfrac{d}{dx}(-ax-hy)}

\to \mathrm{(hx+by)\dfrac{d^{2}y}{dx^{2}}+(h+b\:\dfrac{dy}{dx})\:\dfrac{dy}{dx}=-a-h\:\dfrac{dy}{dx}}

\to \mathrm{(hx+by)\:\dfrac{d^{2}y}{dx^{2}}+h\:\dfrac{dy}{dx}+b\:(\dfrac{dy}{dx})^{2}=-a-h\:\dfrac{dy}{dx}}

\to \mathrm{(hx+by)\:\dfrac{d^{2}y}{dx^{2}}+h\:\dfrac{-ax-hy}{hx+by}+b\:(\dfrac{-ax-hy}{hx+by})^{2}=-a-h\:\dfrac{-ax-hy}{hx+by},\:by\:(1)}

\to \mathrm{(hx+by)\:\dfrac{d^{2}y}{dx^{2}}=-a-2h\:\dfrac{-ax-hy}{hx+by}-b\:(\dfrac{-ax-hy}{hx+by})^{2}}

\quad \mathrm{=\dfrac{-a\:(hx+by)^{2}+2h\:(ax+hy)(hx+by)-b\:(ax+hy)^{2}}{(hx+by)^{2}}}

\quad \mathrm{=\dfrac{-ah^{2}x^{2}-2ahxy-ab^{2}y^{2}+2ah^{2}x^{2}+2bh^{2}y^{2}+2abhxy+2h^{3}xy-a^{2}bx^{2}-2abhxy-bh^{2}y^{2}}{(hx+by)^{2}}}

\quad \mathrm{=\dfrac{(h^{2}-ab)\:(ax^{2}+2hxy+by^{2})}{(hx+by)^{2}}}

\quad \mathrm{=\dfrac{h^{2}-ab}{(hx+by)^{2}}}

\implies \boxed{\mathrm{\dfrac{d^{2}y}{dx^{2}}=\dfrac{h^{2}-ab}{(hx+by)^{3}}}}

Hence, proved.

Related problem:

Differentiate Sin inverse of 2 X upon oneplus x square with respect to Cos inverse of 1 - x square upon oneplus x square - https://brainly.in/question/3911961

Similar questions