Math, asked by hkashyap0k09, 7 months ago

If ax^2 + bx + c = 0 has roots alpha and beta then thr quadratic equation cx^2 + bx + a =0 has roots​

Answers

Answered by nandinisingh0
4

Answer:

hope it helps you

Step-by-step explanation:

If ax

2

+bx+c=0 has roots α and β then-

2

+bα+c=0 and aβ

2

+bβ+c=0

If α,β are the roots of x

2

−p(x+1)−c=0,c

=1 then, (α+1)(β+1)=1-c

Answered by Anonymous
4

ANSWER :

WE KNOW, x²-(sum of roots)x+product of roots=0.

So,

 \alpha  +  \beta  =  -  \frac{b}{a}  \underline{ \:  \:  \:   \:  \:  \: \: }(1) \\  \alpha  \beta  =  \frac{c}{a}  \underline{ \:  \:  \:  \:  \: \:  \: }(2) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

SOLUTION :

Let the roots are p and q

c {x}^{2}  + bx + a = 0

MULTIPLYING -1/a BOTH SIDE

 \longrightarrow \:   -  \frac{c}{a} {x}^{2}  -  \frac{b}{a}  x- 1 = 0

 \longrightarrow \:   -   \alpha  \beta  {x}^{2}  -   (\alpha   +  \beta )  x- 1 = 0

 \longrightarrow {x}^{2}  +  \frac{( \alpha  +  \beta )}{ \alpha  \beta } x +  \frac{1}{ \alpha  \beta }  = 0

Hance,

p  + q=  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

 \longrightarrow \: p =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - q \underline{ \:  \:  \:  \:  \:  \:  \:  \: }(3)

and

pq =  \frac{1}{ \alpha  \beta }

 \longrightarrow \: p =  \frac{1}{ \alpha  \beta q}  \underline{ \:  \:  \:  \:  \:  \:  \: }(4)

From eqn three and four

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  - q =  \frac{1}{ \alpha  \beta q}

 \longrightarrow \:  \beta q +  \alpha q   -   {q}^{2}  \alpha  \beta  = 0

 \longrightarrow \:   -   {q}^{2}  \alpha  \beta  + q( \alpha  +  \beta ) = 0

 \longrightarrow \: q(q -  \alpha  -  \beta ) = 0

\longrightarrow \boxed { \mathfrak{q = 0 \:  \:  \: or \:  \:  \: q =  \alpha  +  \beta }}

Put these two possible values of q in eqn 3

\longrightarrow \boxed{ \mathfrak{p = { \frac{1}{ \alpha }  +  \frac{1}{ \beta }  \:  \:  }}}{when \: q = 0}

\longrightarrow \boxed{ \mathfrak{p = { \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  -  \beta }}} \:  \:  \:  \: when \: q =  \alpha  +  \beta  \\

Similar questions