Math, asked by kotlalakshmiprasanna, 6 months ago

If ax^2+bx+c=0 has two roots alpha,beta then alpha+beta=-b/a , alpha beta=c/a
Now answer the following question
Find the value of alpha cube+beta cube​

Answers

Answered by Anonymous
1

Answer:

(\alpha+\beta)(\alpha^2 - \alpha.\beta + \beta^2)(α+β)(α

2

−α.β+β

2

)

Explanation:

Since, we know that,

(\alpha+\beta)^3=\alpha^3+\beta^3+3.\alpha.\beta(\alpha+\beta)(α+β)

3

3

3

+3.α.β(α+β)

\implies \alpha^3+\beta^3 = (\alpha+\beta)^3 - 3.\alpha.\beta(\alpha+\beta)⟹α

3

3

=(α+β)

3

−3.α.β(α+β)

\implies \alpha^3+\beta^3 = (\alpha + \beta)[(\alpha+\beta)^2-3\alpha.\beta]⟹α

3

3

=(α+β)[(α+β)

2

−3α.β]

\implies \alpha^3+\beta^3 = (\alpha + \beta)(\alpha^2+\beta^2+2.\alpha.\beta-3.\alpha.\beta)⟹α

3

3

=(α+β)(α

2

2

+2.α.β−3.α.β)

( Because, (a+b)² = a² + 2ab + b² ),

\implies \alpha^3+\beta^3 = (\alpha + \beta)(\alpha^2+\beta^2-\alpha.\beta)⟹α

3

3

=(α+β)(α

2

2

−α.β)

Similar questions