Math, asked by anu7059, 11 months ago

If ax^3+3x^2+bx-2 has a factor (2x+3) and leaves remainder 7 when divided by (x+2),find the values of a and b and hence factorise the expression​

Answers

Answered by Anonymous
10

❏ Question:-

@ If ax^3+3x^2+bx-2 has a factor (2x+3) and leaves remainder 7 when divided by (x+2),find the values of a and b and hence factorise the expression.

❏ Solution:-

Given:-

f(x)=ax³+3x²+bx-2

g_1(x)=(2x+3)

g_2(x)=(x+2)

From the 1'st part of the problem

(ax^3+3x^2+bx-2) has a factor (2x+3)

∴ if f(x) is divided by g_1(x) then it

lefts 0 remainder.

Now, applying Remainder theorem,

g_1(x)=2x+3=0

➝ x= \sf\bf \frac{-3}{2}

Hence,

f( \sf\bf \frac{-3}{2})=a ×\sf\bf (\frac{-3}{2})^{3}+3× \sf\bf (\frac{-3}{2})^{2}+b ×\sf\bf \frac{-3}{2}-2=0

➝a×( \sf\bf \frac{-27}{8})+( \sf\bf 3\times\frac{9}{4})+b×\sf\bf \frac{-3}{2}-2=0

\sf\frac{-27a+27\times 2-3b\times 4}{8}=2

\sf-27a+54-12b=16

\sf-27a-12b=16-54

\sf 27a+12b=38

\sf 12b=38-27a............(i)

✦From the 2nd part of the problem

∴ if f(x) is divided by g_2(x) then it

lefts remainder=7

Now, applying Remainder theorem,

g_2(x)=x+2=0

x=-2

Hence,

\sf\longrightarrow f(-2)=a(-2)^{3}+3(-2)^{2}+b(-2)-2=7

\sf\longrightarrow -8a+12-2b=7+2

\sf\longrightarrow -8a-2b=9-12

[ multiplying by 6 on both sides ]

\sf\longrightarrow 48a+12b=18

\sf\longrightarrow 12b=18-48a..........(ii)

Now comparing the equations (i) and (ii),

\sf\longrightarrow 18-48a=38-27a

\sf\longrightarrow -48a+27a=38-18

\sf\longrightarrow -21a=20

\sf\longrightarrow\boxed{\red{ a=\frac{-20}{21}}}

putting the values of a=\sf\frac{-20}{21} in equation(ii), we get;

\sf\longrightarrow 12b=18-48(\frac{-20}{21})

\sf\longrightarrow 12b=\frac{21\times18+20\times 48}{21}

\sf\longrightarrow b=\frac{378+960}{21\times12}

\sf\longrightarrow b=\frac{1338}{252}

\sf\longrightarrow \boxed{\red{b=\frac{223}{42}}}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions