Math, asked by saarthakmewada6638, 4 months ago

. If ax + 3y = 25, write y in terms of x and also, find the two solutions of this equation.

Answers

Answered by sonalnaik83
5

Answer:

i ) pi ×x + 3 y = 25

3y = 25 - pi× x

y = ( 25 - pi × x )/ 3

y = 25/3 - pi × x /3

ii )

If x = 7

y = 25/ 3 - ( 22/ 7 )× ( 7/3)

y = 25/3 - 22 /3

y = ( 25 - 22 )/3

y = 3/3

y = 1

ii) if x = - 7

y = 25/3 - ( 22/ 7 ) × ( - 7 / 3 )

y = 25/ 3 + 22 / 3

y = ( 25 + 22 )/ 3

y = 47/ 3

Two solutions are

( 7 , 1 ) , ( -7 , 47 / 3 )

I hope this helps you.

Answered by pradhanmadhumita2021
40

\huge\underline{\sf \orange{Solution-}}

\begin{gathered}\rm \green{Given \:  expression \:  is}\end{gathered}\\\begin{gathered}\rm \green{x + 3y = 25}\end{gathered} \\\begin{gathered}\rm \green{3y = 25 - x}\end{gathered} \\\begin{gathered}\rm \green{\implies \:y = \dfrac{25 - x}{3}}\end{gathered}\\\begin{gathered}\rm\red{❶  \: Substituting \:  'x = 1' \:  in  \: the  \: given  \: equation, we  \: get}\end{gathered}\\\begin{gathered}\rm \green{y = \dfrac{25 - 1}{3}} \end{gathered} \\\begin{gathered}\rm \green{\:y = \dfrac{24}{3}}\end{gathered}\\\begin{gathered}\rm \green{\implies \:y = 8}\end{gathered}\\\begin{gathered}\rm \red{❷ \:  Substituting \:  'x = 4'  \: in \:  the  \: given \:  equation, we  \: get}\end{gathered}\\\begin{gathered}\rm \green{ \:y = \dfrac{25 - 4}{3}} \end{gathered}\\\begin{gathered}\rm \green{ \:y = \dfrac{21}{3}}\end{gathered}\\\begin{gathered}\rm\green{implies \:y = 7}\end{gathered} \\\begin{gathered}\rm\green{Hᴇɴᴄᴇ,}\end{gathered}\\\begin{gathered}\rm\green{➢ Pair \:  of \:  points \:  of  \: the \:  given \:  equation \:  are \:  shown \:  in \:  the \:  below \:  table.}\end{gathered} \\\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf \gray{  x} & \bf \gray{ y} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \blue{ 1} & \sf \blue{ 8} \\ \\ \sf \blue{ 4 }& \sf \blue{ 7} \end{array}}\end{gathered}\end{gathered} \\

Similar questions