If ax?+bx+3 = 0 and 2x² +8x+6=0 have both roots common, then b:a
Answers
Answered by
0
Answer:
Hi, I am putting this answer assuming that the "?" you have put in first equation is square, if it is something else, please let me know
Step-by-step explanation:
2x²+8x+6=0
2x²+2x+6x+6=0
2x(x+1)+6(x+1)=0
(2x+6)(x+1)=0
x=(-1),(-3)
ax²+bx+3=0
Substituting x=-1,
a-b+3=0
a-b=-3
b-a=3 ...(i)
ax²+bx+3=0
Substituting x=-3,
9a-3b+3=0
3b-9a=3
b-3a=1 ...(ii)
Subtracting eq(ii) from eq(i),
b-3a=3
-b+a=-1
______
2a=2
a=1 ...(iii)
Multiplying eq(ii) by 3,
3(-b+a)=(-1*3)
-3b+3a=-3 ...(iv)
Subtracting eq(iv) from eq(i),
b-3a= 3
-3b+3a=-3
________
-2b=0
b=0
Therefore, b:a::0:1
Similar questions