If ax + by = a²-b² and bx + ay = 0 ,find the value of ( x+ y).
Answers
Solution :-
Given pair of linear equations :
→ ax + by = a² + b²
→ bx + ay = 0
Finding the value of x from 2nd equation
⇒ bx + ay = 0
⇒ bx = - ay
⇒ x = - ay/b
Substituting x = - ay/b in ax + by = a² - b²
⇒ a(-ay/b) + by = a² - b²
⇒ - a²y/b + by = a² - b²
⇒ ( - a²y + b²y)/b = a² - b²
⇒ [ - y(a² - b²) ] /b = a² - b²
⇒ - y/b = (a² - b²) / (a² - b²)
⇒ - y/b = 1
⇒ - y = b
⇒ y = - b
Substituting y = - b in x = - ay/b
⇒ x = - a(-b)/b
⇒ x = ab/b
⇒ x = a
Now, x + y
x + y = a + ( - b ) = a - b
Therefore the value of (x + y) is (a - b)
Given:
If ax + by = a² - b² and bx + ay = 0.
To find:
The value of (x+y).
Explanation:
We have equation,
- ax + by = a² - b²......................(1)
- bx + ay = 0..............................(2)
Using substitution Method:
From equation (2),we get;
→ bx + ay = 0
→ bx = -ay
→ x = ........................(3)
Putting the value of x in equation (1),we get;
→
→
→ -a²y + b²y = a²b - b³
→ -y(a² - b²) = b(a² - b²)
→ y= -b
Putting the value of y in equation (3), we get;
→ x =
→ x =
→ x = a
Now,
→ x + y = a + (-b)
→ x + y = a - b
Thus,
The value is a-b.