Math, asked by arnabduttasnt2580, 4 months ago

If ax +by =p and bx-ay =q and a²+b²=1 then prove that p²+q²=x²+y²​

Answers

Answered by SparklingBoy
7

Answer:

Given that

ax +by =p ..........(1)

and

bx-ay =q ..........(2)

and

a²+b²=1 ..........(3)

And

we have to prove that

p²+q²=x²+y²

Squaring and adding (1) and (2)

We get

(ax + by) {}^{2}  +  {(bx - ay)}^{2}  =  {p}^{2}  +  {q}^{2}  \\  \\  {a}^{2}  {x}^{2}  +  {b}^{2}    {y}^{2}  +  \cancel{2axby} +  {b}^{2}  {x}^{2}  +  {a}^{2} {y}^{2}    -  \cancel{ 2bxay} =  {p}^{2}  +  {q}^{2}  \\  \\ ( {a}^{2} +  {b}^{2}  ) {x}^{2}  + (  {b}^{2}  +  {a}^{2}) {y}^{2}  =  {p}^{2}  +  {q}^{2}  \\  \\ (1) {x}^{2}  + (1) {y}^{2}  =  {p}^{2}  +  {q}^{2}  \:  \:  \:  \:  \:  \:  (\because \: using \: (3)) \\  \\  {x}^{2}  + y {}^{2}  =  {p}^{2}  +  {q}^{2}

Hence Proved

Similar questions