Math, asked by kishorelalit4280, 1 year ago

if ax2 + 2hxy +by2 + 2gx + 2fy +c =0. Find dy/dx

Answers

Answered by zarvis
53
Hope it will be helpful for you
Attachments:
Answered by pragyavermav1
1

Concept :

We  first recall the concept of  differentiation to solve this question.

Differentiation refers to the derivative of a dependent variable with respect  to the independent variable in a Function by differentiating each term seperately .

Given:

The equation is  ax^{2}  + 2hxy +by^{2}  + 2gx + 2fy +c =0                     (1)

To find:

The derivative \frac{dy}{dx} of the given equation

Solution:

On Differentiating equation (1) with respect to x

         \frac{d}{dx}(ax^{2}  + 2hxy +by^{2}  + 2gx + 2fy +c =0)

2ax+2h[x\frac{dy}{dx} +y] +2by\frac{dy}{dx}  +2g +2f\frac{dy}{dx} +0=0\\\\

On dividing both sides by 2, we get,

               ax+h[x\frac{dy}{dx} +y] +by\frac{dy}{dx}  +g +f\frac{dy}{dx} =0\\\\

               ax+hx\frac{dy}{dx} +hy +by\frac{dy}{dx}  +g +f\frac{dy}{dx} =0\\        \\

                                       hx\frac{dy}{dx}  +by\frac{dy}{dx}   +f\frac{dy}{dx} = -(ax+hy+g)\\

                                            (hx+by+f)\frac{dy}{dx}=-(ax+hy+g)\\

Hence,

                                                                 \frac{dy}{dx}=-\frac{(ax+hy+g)}{(hx+by+f)}

This is the required derivative.

Similar questions