If ax²+bx+c and bx²+ax+c have a
common factor X+1 then show that
C=0 and a=b.
Answers
Answered by
0
Answer:
us first substitute P(−1)=0 in P(x)=ax
2
+bx+c as shown below:
P(x)=ax
2
+bx+c
⇒P(−1)=a(−1)
2
+(b×−1)+c
⇒0=(a×1)−b+c
⇒a−b+c=0.........(1)
Now, substitute Q(−1)=0 in Q(x)=bx
2
+ax+c as shown below:
Q(x)=bx
2
+ax+c
⇒Q(−1)=b(−1)
2
+(a×−1)+c
⇒0=(b×1)−a+c
⇒−a+b+c=0.........(2)
Now subtracting the equations 1 and 2, we get
(a−(−a))−b−b+c−c=0
⇒a+a−2b=0
⇒2a−2b=0
⇒2a=2b
⇒a=b
Now substitute a=b in equation 1:
a−a+c=0
⇒c=0
Hence a=b and c=0.
Similar questions