If ax2
+ bx + c and bx2
+ ax + c have a common factor x + 1
then show tat c = 0 and a = b
Answers
Explanation.
⇒ ax²+bx+c and bx²+ax+c have common factor ( x + 1 ).
To show that c = 0 and a = b.
⇒ ax²+bx+c + 0. ..........(1).
common factor is equal to zeroes.
⇒ x + 1 = 0.
⇒ x = -1.
put the value of x = -1 in equation we get,
⇒ a(-1)²+b(-1)+c = 0.
⇒ a - b + c = 0.
⇒ a + c = b .........(3).
⇒ bx²+ax+c = 0. ..........(2).
put the value of x = -1 in equation we get,
⇒ b(-1)²+a(-1)+c = 0
⇒ b - a + c = 0.
⇒ b + c = a ............(4).
put the value of equation (4) in equation (3) we get,
⇒ b + c + c = b.
⇒ 2c = 0.
⇒ c = o.
put the value of c = 0 in equation (3) and (4) we get,
put the value in equation (3).
⇒ a + 0 = b.
⇒ a = b.
put the value in equation (4)
⇒ b + 0 = a.
⇒ b = a.
HENCE VERIFIED.
MORE INFORMATION.
(1) = D = Discriminant = b²-4ac =0
(2) = value of x = .
(3) = quadratic polynomial whose zeroes are = α and β.
x²-(α+β)x+αβ = 0.
(4) = quadratic polynomial whose zeroes are = α,β and γ.
x³-(α+β+γ)x²+(αβ+βγ+γα)x-(αβγ) = 0.