If ax3+3x2+bx-3 has a factor 2x+3 and leave -3 when divided by x+2 find the value of a and b
Answers
Answered by
32
p(x) = ax³ + 3x² + bx - 3
g(x) = 2x + 3 or x = -3/2
f(x) = x + 2 or x = -2
p(-2) = a(-2)³ + 3(-2)² + b(-2) - 3 = -3
=> -8a + 12 - 2b = 0
=> -8a - 2b = -12
=> -(8a + 2b) = -12
=> 8a + 2b = 12
=> 4a + b = 6 ------------- (i)
p(-3/2) = a(-3/2)³ + 3(-3/2)² + b(-3/2) - 3 = 0
=> -27/8 a + 27/4 -3/2 b = -3
=> (-27a + 54 - 6b)/8 = -3
=> -27a + 54 - 6b = -24
=> -27a - 6b = -24 - 54
=> -27a - 6b = - 78
=> -3(9a + 2b) = -78
=> 9a + 2b = 26 -----------(ii)
Multiplying eq.(i) by 2 and subtracting it from eq(ii) , we have
8a + 2b = 12
9a + 2b = 26
----------------------
-a = - 14
[ a = 14 ]
Putting value of a in eq(i)
4a + b = 6
4(14) + b = 6
b = 6 - 56
b = - 51
Similar questions