Math, asked by arihantrajeev30105, 1 month ago

If ay = by = cz and b2=ac, prove that y= (2xz/x+y).​

Answers

Answered by anindyaadhikari13
5

\textsf{\large{\underline{Correct Question}:}}

  • If aˣ = bʸ = cᶻ and b² = ac, prove that y = 2xz/(x + z)

\textsf{\large{\underline{Solution}:}}

Let us assume that:

 \rm: \longmapsto {a}^{x} =  {b}^{y} =  {c}^{z} = k

Therefore, we can say that:

 \rm: \longmapsto {a}^{x}= k \:  \:  or \:  \: a =  {k}^{^{1}/_{x}  }

 \rm: \longmapsto {b}^{y}= k \:  \:  or \:  \: b=  {k}^{^{1}/_{y}  }

 \rm: \longmapsto {c}^{z}= k \:  \:  or \:  \: c=  {k}^{^{1}/_{z}  }

Now, it's given that:

 \rm: \longmapsto {b}^{2} = ac

 \rm: \longmapsto {({k}^{^{1}/_{y}})}^{2} ={k}^{^{1}/_{x}} \times {k}^{^{1}/_{z}}

 \rm: \longmapsto {k}^{^{2}/_{y}} ={k}^{^{1}/_{x} +^{1}/_{z} }

Comparing base, we get:

 \rm: \longmapsto \dfrac{2}{y}  =  \dfrac{1}{x}  +  \dfrac{1}{z}

 \rm: \longmapsto \dfrac{2}{y}  =  \dfrac{x + z}{xz}

 \rm: \longmapsto \dfrac{1}{y}  =  \dfrac{x + z}{2xz}

 \rm: \longmapsto y =  \dfrac{2xz}{x + z}

Hence, proved.

\textsf{\large{\underline{More To Know}:}}

Laws Of Exponents: If a, b are positive real numbers and m, n are rational numbers, then the following results hold.

 \rm 1. \:  \:  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 \rm 2. \:  \:  ({a}^{m})^{n}  =  {a}^{mn}

\rm 3. \:  \:  \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \rm4. \:  \:  {a}^{m} \times  {b}^{m} =  {(ab)}^{m}

 \rm5. \: \:   \bigg(\dfrac{a}{b} \bigg)^{m}  =  \dfrac{ {a}^{m} }{ {b}^{m} }

 \rm6. \:  \:  {a}^{ - n} =  \dfrac{1}{ {a}^{n} }

 \rm7. \:  \:  {a}^{n} =  {b}^{n} \rightarrow a = b, n \neq0

 \rm8. \:  \:  {a}^{m} =  {a}^{n} \rightarrow m = n, a \neq 1

Similar questions