Math, asked by supriya312, 9 months ago


If b = 3^1/3 +3, then b3 -9b2 + 27b is equal to​

Answers

Answered by Agastya0606
18

Given: Value of b = 3^1/3 +3

To find: b^3 - 9b^2 + 27b is equal to​?

Solution:

  • As we have given the value of b as 3^1/3 +3, so lets put it directly in the given equation, we get:
  • b^3 -9b^2 + 27b = (3^1/3 +3)^3 - 9(3^1/3 +3)^2 + 27(3^1/3 +3)
  • Now solving further we get:

        (3 + 27 + 9x3^2/3 + 27x3^1/3) - 9(3^2/3 + 9 + 6x3^1/3) + 27x3^1/3 + 81

Opening all the brackets, we get:

        30 + 9x3^2/3 + 27x3^1/3 - 9x3^2/3 - 81 - 54x3^1/3 + 27x3^1/3 + 81

After cancelling the terms, we get:

      = 30

Answer:

           So the value of b^3 - 9b^2 + 27b is equal to​ 30 if b =  3^1/3 +3.

Answered by bivan
9

Answer:

30

Step-by-step explanation:

b =  \sqrt[3]{3}  + 3 \\ {b}^{3}  - 9 {b}^{2}  + 27b

by putting the value we get :

{( \sqrt[3]{3}  + 3) }^{3}  - 9 {( \sqrt[3]{3}  + 3) }^{2}  + 27( \sqrt[3]{3}  + 3)  \\  =  3 + 27 + 9 \sqrt[3]{ {3}^{2} }  + 27 \sqrt[3]{3}  - 9\sqrt[3]{ {3}^{2} } - 81 - 54\sqrt[3]{3} + 27\sqrt[3]{3} + 81 \\  =  30 + 81 - 81- 54\sqrt[3]{3} + 27\sqrt[3]{3}+ 27\sqrt[3]{3}- 9\sqrt[3]{ {3}^{2} } +  9\sqrt[3]{ {3}^{2} } \\  \\  = 30

Similar questions