If B=30° prove that, 3 sin B - 4sin² B= sin 3 B.
please answer this question.
no franks
Answers
Answered by
3
Answer:
•cosA+cosB=4sin
2
(
2
C
)
2cos
2
A+B
cos
2
A−B
=4sin
2
(
2
C
)
A+B+C=π⇒A+B=π−C
cos
2
π−C
cos
2
A−B
=2sin
2
(
2
C
)
sin
2
C
cos
2
A−B
=2sin
2
(
2
C
)
cos
2
A−B
=2sin(
2
C
)
cos
2
C
cos
2
A−B
=2sin(
2
C
)cos
2
C
cos(
2
π−(A+B)
)cos
2
A−B
=sinC
2sin
2
A+B
cos
2
A−B
=sinC
sinA+sinB=2sinC
a
sinA
=
b
sinB
=
c
sinC
=k
sinA=ak,sinB=bk,sinC=ck
ak+bk=2(ck)
a+b=2c
Therefore the sides of triangle a,b,c are in A.P.
Similar questions