Math, asked by ladmanas, 6 hours ago

If -b=4 and ab=21 , find the value of a^3-b^3.

Answers

Answered by ananya4das
0

{ \large{ \underbrace{ \boxed{ \mathfrak{ \color{deeppink} {Answer }}}}}}

{\rightarrow{ \boxed{ \mathfrak{ \color{lime} { {a}^{3}   -  {b}^{3}  = 316}}}}}

{ \large{ \underbrace{ \boxed{ \mathfrak{ \color{aqua} {Explanation  }}}}}}

To find :-

a³-b³

Given :-

a -b = 4 and ab = 21

Formula :-

 {\rightarrow{ \boxed{ \mathfrak{ \color{yellow} { {a}^{3}   -  {b}^{3}  = ( {a - b})^3 + 3ab(a - b)}}}}}

Solution :-

Now putting the values in the formula

  \sf \: {a}^{3}  - {b}^{3}   \Rightarrow({4})^{3}  + 3 \times 21 \times 4 \\  \\  \Rightarrow64 + 252 \:   \\  \\  \Rightarrow \mathfrak \color{red}316 \qquad \:

Hence :-

a³-b³=316

Derivation of formula :-

We know, (a-b)³ =a³-3a²b+3ab²-b³

If we subtract 3ab(a-b) i.e.,3a²b-3ab² from

(a-b)³ i.e.,a³-3a²b +3ab²-b³ we will get a³-b³

By solving (a-b)³+3ab(a-b)

= a³-3a²b+3ab²-b²+3a²b-3ab²

=a³-b³+3a²b-3a²b+3ab²-3ab²

=a³- b³

We get a³-b³ as (a-b)³+3ab(a-b)

There are many more formulas but for this type of question this formula will be used .

As the values of (a-b) and ab is given.

___________________________

Some algebraic formulas :-

  • a² - b² = (a+b)(a-b)

  • (a+b)² = a²+2ab +b²

  • (a-b)² = a²-2ab +b²

  • (a + b + c)²= a² + b²+ c²+ 2ab + 2bc + 2ca.

  • (a – b – c)² = a² + b² + c² – 2ab + 2bc – 2ca.

  • (a + b)³ = a³ + 3a²b + 3ab² + b³

  • (a + b)³ = a³ + b³+ 3ab(a + b)

€€________________________€€

hope it helps..... :)

Similar questions