Math, asked by aashutoshmishra9097, 6 months ago

If ∠B = 4x + 11 and ∠A = 2x + 33, find the value of x, so that ABCD is an isosceles trapezium.

Answers

Answered by ItzArchimedes
7

Diagram :-

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,4){5mm}}\put(0,0){\line(3,0){3cm}}\put(15,0){\line(-1,4){5mm}}\put(2.4,10){\line(3,0){2cm}}\put(0.4,5){\line(2,0){3mm}}\put(14.5,5){\line(-3,0){3mm}}\put(-1,-1){\sf\footnotesize A}\put(15,-1.2){\sf\footnotesize D}\put(1.2,10){\sf\footnotesize B}\put(13,10){\sf\footnotesize D}\qbezier(0.45,2)(2.5,1.3)(2,0)\put(2,2){\sf\footnotesize $\sf 2x+33^\circ$}\qbezier(12.9,0)(12,2)(14.7,1.5)\put(8.7,1.8){\sf\footnotesize$\sf 4x+11^\circ$}\end{picture}

Solution :-

By the given information ,

  • Trapezium is a quadrilateral .

Finding x using property of quadrilateral ,

As we know that ,

  • Sum of adjacent sides of a quadrilateral is equal to 180°

So , here

  • ∠A & ∠D are adjacent sides

Now ,

⇒ ∠A + ∠D = 180°

⇒ 2x + 33° + 4x + 11° = 180°

⇒ 6x + 44° = 180°

⇒ 6x = 180° - 44°

⇒ 6x = 134°

⇒ x = 134°/6

x = 22.66°

Hence , x = 22.66°

Similar questions