Math, asked by pranjalratanbhardwaj, 9 months ago

if ∝,b are the zeros of f(x)=x square + x + 1, then find 1/∝+1/b. ​

Answers

Answered by BrainlyPopularman
45

ANSWER :

(1/∝) + (1/b) = -1

SOLUTION :

GIVEN :

∝, b are the zero's of polynomial f(x) = x² + x + 1.

TO FIND :

• 1/∝+1/b = ?

SOLUTION :

▪︎ We know that –

• Sum of roots = - (coffieciant of x) / (coffieciant of x²)

➨ ∝+ b = -(1)/(1)

➨ ∝+ b = - 1

• Product of roots = (constant term) / (coffieciant of x²)

➨ (∝)(b) = (1)/(1)

➨ (∝)(b) = 1

• Now Let's find –

= (1/∝) + (1/b)

= (∝+ b)/(∝.b)

• Put the values –

= (-1)/(1)

= -1

• Hence , (1/∝) + (1/b) = -1

Answered by Anonymous
11

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \:  \:  \: {\sf{ f(x)= {x}^{2} + x + 1 }} \\ \\

{\bf{\blue{\underline{To\Find:}}}}

  \dagger \:  \:  \: {\sf{  \frac{1}{ \alpha}  +  \frac{1}{ \beta} =?}} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{  {x}^{2}  + x + 1}} \\ \\

Compare it with ,

→ ax²+bx+c=0

 : \implies{\sf{ a = 1}} \\ \\

 : \implies{\sf{ b = 1}} \\ \\

 : \implies{\sf{ c = 1}} \\ \\

__________________________________

 : \dagger \:  \boxed{\sf{sum \: of \: roots \:  =  \alpha +  \beta =  \frac{ - b}{a}  =  \frac{ - (coeff. \: of \: x)}{coeff. \: of \:  {x}^{2} } }} \\ \\

 : \implies{\sf{  \alpha +  \beta =  \frac{ - 1}{1} }} \\ \\

 : \implies{\sf{  \alpha +  \beta = - 1}} \\ \\

__________________________________

 : \dagger \:  \boxed{\sf{product \: of \: roots \:  =  \alpha  \beta =  \frac{ c}{a}  =  \frac{ constant \: term}{coeff. \: of \:  {x}^{2} } }} \\ \\

 : \implies{\sf{  \alpha   \beta =  \frac{  1}{1} }} \\ \\

 : \implies{\sf{  \alpha  \beta =  1}} \\ \\

__________________________________

  \dagger \:  \: \underline {\mathfrak{ according \: to \: the \: ques:-}} \\ \\

 : \implies{\sf{  \frac{1}{ \alpha }  +  \frac{1}{ \beta} }} \\ \\

 : \implies{\sf{  \frac{ \beta +  \alpha}{ \alpha  \beta} }} \\ \\

 : \implies{\sf{  \frac{ (1)}{ (1)} }} \\ \\

 : \implies{\sf{  -1}} \\ \\

Similar questions