If B
AxBI= \Ā.BI, then the angle between
A and B will be :
(1) 30°
(3) 60°
(2) 45°
(4) 53
th
Attachments:
Answers
Answered by
0
Answer:
We know that,
A×B=ABsinθ
Also, A.B=ABcosθ
Given : ∣A×B∣=
3
A.B
Using ∣A×B∣=∣A∣∣B∣sinθ
We get ∣A×B∣=ABsinθ
A.B=∣A∣∣B∣cosθ
∴ ABsinθ=
3
ABcosθ
tanθ=
3
⟹θ=60
o
Now (A+B)
2
=A
2
+B
2
+2A.B
=A
2
+B
2
+2ABcosθ
=A
2
+B
2
+2AB×
2
1
=A
2
+B
2
+AB
or ∣A+B∣=(A
2
+B
2
+AB)
1/2
Similar questions