If B+C=60' prove that sin(120'-B) =sin(120'-C)
Answers
Answered by
47
Hello!
L.H.S. = sin ( 120° - B )
= sin ( 120° - ( 60° - C ) )
= sin ( 120° - 60° + C )
= sin ( 60 + C )
= sin ( 180° - ( 60° + C ) )
= sin ( 120° - C ) = R.H.S
Cheers!
L.H.S. = sin ( 120° - B )
= sin ( 120° - ( 60° - C ) )
= sin ( 120° - 60° + C )
= sin ( 60 + C )
= sin ( 180° - ( 60° + C ) )
= sin ( 120° - C ) = R.H.S
Cheers!
Answered by
2
Answer:
It is proven below
Step-by-step explanation:
Given that B+C =60°
B =60°- C
here we need to prove that sin(120°- B) = sin(120°-C)
take LHS ,
⇒ sin (120°- B )
⇒ sin (120° -( 60° -C) (from above data)
⇒ sin (120° - 60° + C)
⇒ sin ( 60° + C)
⇒ sin(180°-(60°+C)) [ sin (180° – θ) = sin θ for any value of θ ]
⇒ sin(180° - 60°-C)
⇒ sin(120°-C) = RHS
hence it is proven that if B+C= 60° then
sin(120°-B) = sin(120°-C)
Similar questions