if b+c/a=c+a/b=a+b/c and a+b+cnot equal to 0 then show that each of these ratios is equal to 2. Also prove that a²+b²+c²=ab+bc+ca
Answers
Answered by
1
Answer:
sydgxgdyphlcydb. bmcyfruz,,
Answered by
7
Answer:
Step-by-step explanation:
(b+c)/a=(c+a)/b=(a+b)/c
ADDING 1 IN EACH STEP
(b+c)/a+1=(c+a)/b+1=(a+b)/c+1
(b+c+a)/a=(c+a+b)/b=(a+b+c)/c
As a+b+cis not zerop
So 1/a=1/b=1/c
so a=b=c
Thus each ratio
=(a+a)/a=2
Also
a²+b²+c²=3a²
ab+bc+ca
=a*a+a*a+a*a=3a²
So a²+b²+c²=ab+bc+ca
Similar questions