Math, asked by HarryPotter2004, 11 months ago

if (b+c)/a, (c+a)/b and (a+b)/c are in AP, show that 1/a, 1/b and 1/c are in AP​

Answers

Answered by shahsaleem
2

hope its help u..............

Attachments:
Answered by Anonymous
14

\mathfrak{\Large{\underline{\underline{Solution : }}}}

\mathsf{\underline{Given,}} \\ \\ \\ \sf \implies \dfrac{( b \: + \: c )}{a}, \: \dfrac{( c \: + \: a )}{b}, \: \dfrac{ ( a \: + \: b)}{c} \: are \: in \: A.P.   \\  \\  \\ \textsf{Add 1 to all terms : } \\ \\ \\ \sf \implies \dfrac{ b \: + \: c }{a} \: + \: 1, \: \dfrac{c \: + \: a }{b} \: + \: 1, \: \dfrac{  a \: + \: b}{c} \: + \: 1 \: are \: in \: A.P.

\sf \implies \dfrac{ b \: + \: c \: + \: a }{a} , \: \dfrac{c \: + \: a \: + \: b }{b},\: \dfrac{  a \: + \: b \: + \: c}{c} \ are \: in \: A.P.  </p><p></p><p> \\  \\  \\ \sf \implies \dfrac{ \cancel{ a \:  +  \: b \:  +  \: c}}{a} , \: \dfrac{ \cancel{a \: + \: b \: + \: c}}{b},\: \dfrac{ \cancel{  a \: + \: b \: + \: c}}{c} \ are \: in \: A.P.  </p><p></p><p> \\  \\  \\ \sf \:  \:  \therefore \:  \: \dfrac{1}{a} \:  \: , \: \:  \dfrac{1}{b} \:  \:  , \: \:  \dfrac{1}{c} \:  \: are \: in \: A.P.

\boxed{\Large{\underline{ \mathfrak{Proved  \:  \: !! }}}}</p><p>

Similar questions