Math, asked by prudhviraj2004, 5 months ago


If ā,b,c are non-coplanar vectors, prove that b xč, čxā, āxb are also non coplanar and
hence express any vector d in terms of the vectors b xč, c×a, and axb.​

Answers

Answered by sakshamramola100
0

Step-by-step explanation:

Given that,  

p=  

abc

b×c

​  

,q=  

abc

c×a

​  

 and r=  

abc

a×b

​  

 

∴a.p=  

abc

a.(b×c)

​  

=  

abc

a.(b×c)

​  

=1

And a.q=  

abc

a.(c×a)

​  

=  

abc

a.(c×a)

​  

=0

similarly, b.q=c.r=1

And a.r=bq=cq=c.p=br=0

∴a+b.p+b+c.q+c+q.r

=a.p+b.p+bq+c.q+c.r+a.r

=1+1+1=3

Answered by NehaKari
0

Answer:

Step-by-step explanation: Given that,

p=

abc

b×c

,q=

abc

c×a

 and r=

abc

a×b

∴a.p=

abc

a.(b×c)

=

abc

a.(b×c)

=1

And a.q=

abc

a.(c×a)

=

abc

a.(c×a)

=0

similarly, b.q=c.r=1

And a.r=bq=cq=c.p=br=0

∴a+b.p+b+c.q+c+q.r

=a.p+b.p+bq+c.q+c.r+a.r

=1+1+1=3

Similar questions