If ā,b,c are non-coplanar vectors, prove that b xč, čxā, āxb are also non coplanar and
hence express any vector d in terms of the vectors b xč, c×a, and axb.
Answers
Answered by
0
Step-by-step explanation:
Given that,
p=
abc
b×c
,q=
abc
c×a
and r=
abc
a×b
∴a.p=
abc
a.(b×c)
=
abc
a.(b×c)
=1
And a.q=
abc
a.(c×a)
=
abc
a.(c×a)
=0
similarly, b.q=c.r=1
And a.r=bq=cq=c.p=br=0
∴a+b.p+b+c.q+c+q.r
=a.p+b.p+bq+c.q+c.r+a.r
=1+1+1=3
Answered by
0
Answer:
Step-by-step explanation: Given that,
p=
abc
b×c
,q=
abc
c×a
and r=
abc
a×b
∴a.p=
abc
a.(b×c)
=
abc
a.(b×c)
=1
And a.q=
abc
a.(c×a)
=
abc
a.(c×a)
=0
similarly, b.q=c.r=1
And a.r=bq=cq=c.p=br=0
∴a+b.p+b+c.q+c+q.r
=a.p+b.p+bq+c.q+c.r+a.r
=1+1+1=3
Similar questions