Math, asked by raghavan79, 1 year ago

If b+c, c+a, a + b are in H.P., then prove that a2,
b2, c2 are in A.P.​

Answers

Answered by parvd
22

Step-by-step explanation:

here a^2, b^2,and c^2 are in ap

therefore  b^2-a^2=c^2-b^2

              2(b^2)=a^2+c^2....................1

now a^2, b^2,and c^2 are in ap

therefore 1/a^2, 1/b^2, 1/c^2 are in hp

                  1/(b^2)^2=1/(a^2)^2*1/(c^2)^2

                 b^4=a^2*c^2 (taking square root on both sides and reciprocle)

                 b^2=ac...............................2

from 1&2      2(ac)=a^2+c^2

 

                  a^2-2ac+c^2=0

                 (a-c)^2=0

                  a-c=0

                  a=c.............................3

from 3&2          b^2=c^2

                       b=c.........................4

from 3&4           a=b=c

                      a+b=b+c=c+a

                      (b+c)^2=(a+b)*(c+a)

              and therefore  

                                                 b+c,c+a,a+b are in h.p

-------------------------------------------------------------------------------------

Similar questions