. If (b+c), (c+a), (a+b) are in HP, then a^2, b^2, c^2 are in??
a) AP
b) GP
c) HP
d) None
Answers
Answer:
a) A.P
Step-by-step explanation:
Given,
(b + c) , (c + a) , (a + b) are in H.P
To Find :-
a² , b² , c² are in
How To Find :-
By using given condition we need to write them as reciprocals of elements of Arithmetic Progression. After doing that and simplifying that we will get an equation on a² , b² , c² . We need to check that whether they are in A.P or G.P or H.P.
Formula Required :-
If x , y , z are in H.P then :-
∴ If x , y , z are in H.P then 'y' = 2xz/x + z.
If s , t , u are in A.P then :-
t - s = u - t
t + t = u + s
2t = u + s
∴ If s , t , u are in A.P then '2t = u + s'
Solution :-
(b + c) , (c + a) , (a + b) are in H.P :-
ac + 2bc + c² + a² + 2ab + ac = 2ab + 2ac + 2b² + 2bc
2ac + 2bc + a² + c² + 2ab = 2ab + 2ac + 2b² + 2bc
2ac + 3bc + 2ab - 2ab - 2ac - 2bc + a² + c² = 2b²
a² + c² = 2b²
a² - b² = b² - c²
∴ a² , b² , c² are in A.P