English, asked by minipriyamaniyarasan, 8 months ago

if b can do a piece of work in 6 hrs ,d snd c together can do it in 4 hrs and a,b and c together in 2 2/3 hrs. In how many hours can a and b together do the same piece of work​

Answers

Answered by mddilshad11ab
66

\sf\large\underline{Given:}

\tt{\implies A\: can\:do\:a\: work=6\: hours}

\tt{\implies B+C\: can\:do\:a\: work=4\: hours}

\tt{\implies A+B+C\: can\:do\:a\: work=2\dfrac{2}{3}\: hours}

\sf\large\underline{To\: Find:}

\tt{\implies A+B\: can\:do\:a\: work=?}

\sf\large\underline{Let:}

\tt{\implies A's\:one\:hour\: work=\frac{1}{6}}

\tt{\implies (B+C)'s\:one\:hour\: work=\frac{1}{4}}

\tt{\implies (A+B+C)'s\:one\:hour\: work=\frac{3}{8}}

\sf\large\underline{Solution:}

  • Here we have to calculate 1st work done by A]

\tt{\implies (A+B+C)-(B+C)}

\tt{\implies \dfrac{3}{8}-\dfrac{1}{4}}

\tt{\implies \dfrac{3-2}{8}}

\tt{\implies \dfrac{1}{8}}

\tt{\implies \therefore\:A's\:one\: hour\:work=\dfrac{1}{8}}

  • Now, calculate work done by A+B here]

\tt{\implies A+B\:can\:do\:a\: work}

\tt{\implies \dfrac{1}{8}+\dfrac{1}{6}}

\tt{\implies \dfrac{3+4}{24}}

\tt{\implies \dfrac{7}{24}}

\tt{\implies \dfrac{24}{7}}

\tt{\implies 3\dfrac{3}{7}\: hours}

\sf\large{Hence,}

\tt{\implies A+B\: can\:do\:a\: work=3\dfrac{3}{7}\:hours}

Answered by dhiraj99926
0

Answer:

Given:

\tt{\implies A\: can\:do\:a\: work=6\: hours}⟹Acandoawork=6hours

\tt{\implies B+C\: can\:do\:a\: work=4\: hours}⟹B+Ccandoawork=4hours

\tt{\implies A+B+C\: can\:do\:a\: work=2\dfrac{2}{3}\: hours}⟹A+B+Ccandoawork=2

3

2

hours

\sf\large\underline{To\: Find:}

ToFind:

\tt{\implies A+B\: can\:do\:a\: work=?}⟹A+Bcandoawork=?

\sf\large\underline{Let:}

Let:

\tt{\implies A's\:one\:hour\: work=\frac{1}{6}}⟹A

sonehourwork=

6

1

\tt{\implies (B+C)'s\:one\:hour\: work=\frac{1}{4}}⟹(B+C)

sonehourwork=

4

1

\tt{\implies (A+B+C)'s\:one\:hour\: work=\frac{3}{8}}⟹(A+B+C)

sonehourwork=

8

3

\sf\large\underline{Solution:}

Solution:

Here we have to calculate 1st work done by A]

\tt{\implies (A+B+C)-(B+C)}⟹(A+B+C)−(B+C)

\tt{\implies \dfrac{3}{8}-\dfrac{1}{4}}⟹

8

3

4

1

\tt{\implies \dfrac{3-2}{8}}⟹

8

3−2

\tt{\implies \dfrac{1}{8}}⟹

8

1

\tt{\implies \therefore\:A's\:one\: hour\:work=\dfrac{1}{8}}⟹∴A

sonehourwork=

8

1

Now, calculate work done by A+B here]

\tt{\implies A+B\:can\:do\:a\: work}⟹A+Bcandoawork

\tt{\implies \dfrac{1}{8}+\dfrac{1}{6}}⟹

8

1

+

6

1

\tt{\implies \dfrac{3+4}{24}}⟹

24

3+4

\tt{\implies \dfrac{7}{24}}⟹

24

7

\tt{\implies \dfrac{24}{7}}⟹

7

24

\tt{\implies 3\dfrac{3}{7}\: hours}⟹3

7

3

hours

\sf\large{Hence,}Hence,

\tt{\implies A+B\: can\:do\:a\: work=3\dfrac{3}{7}\:hours}⟹A+Bcandoawork=3

7

3

hours

Explanation:

please mark me as branliest

Similar questions