if b can do a piece of work in 6 hrs ,d snd c together can do it in 4 hrs and a,b and c together in 2 2/3 hrs. In how many hours can a and b together do the same piece of work
Answers
- Here we have to calculate 1st work done by A]
- Now, calculate work done by A+B here]
Answer:
Given:
\tt{\implies A\: can\:do\:a\: work=6\: hours}⟹Acandoawork=6hours
\tt{\implies B+C\: can\:do\:a\: work=4\: hours}⟹B+Ccandoawork=4hours
\tt{\implies A+B+C\: can\:do\:a\: work=2\dfrac{2}{3}\: hours}⟹A+B+Ccandoawork=2
3
2
hours
\sf\large\underline{To\: Find:}
ToFind:
\tt{\implies A+B\: can\:do\:a\: work=?}⟹A+Bcandoawork=?
\sf\large\underline{Let:}
Let:
\tt{\implies A's\:one\:hour\: work=\frac{1}{6}}⟹A
′
sonehourwork=
6
1
\tt{\implies (B+C)'s\:one\:hour\: work=\frac{1}{4}}⟹(B+C)
′
sonehourwork=
4
1
\tt{\implies (A+B+C)'s\:one\:hour\: work=\frac{3}{8}}⟹(A+B+C)
′
sonehourwork=
8
3
\sf\large\underline{Solution:}
Solution:
Here we have to calculate 1st work done by A]
\tt{\implies (A+B+C)-(B+C)}⟹(A+B+C)−(B+C)
\tt{\implies \dfrac{3}{8}-\dfrac{1}{4}}⟹
8
3
−
4
1
\tt{\implies \dfrac{3-2}{8}}⟹
8
3−2
\tt{\implies \dfrac{1}{8}}⟹
8
1
\tt{\implies \therefore\:A's\:one\: hour\:work=\dfrac{1}{8}}⟹∴A
′
sonehourwork=
8
1
Now, calculate work done by A+B here]
\tt{\implies A+B\:can\:do\:a\: work}⟹A+Bcandoawork
\tt{\implies \dfrac{1}{8}+\dfrac{1}{6}}⟹
8
1
+
6
1
\tt{\implies \dfrac{3+4}{24}}⟹
24
3+4
\tt{\implies \dfrac{7}{24}}⟹
24
7
\tt{\implies \dfrac{24}{7}}⟹
7
24
\tt{\implies 3\dfrac{3}{7}\: hours}⟹3
7
3
hours
\sf\large{Hence,}Hence,
\tt{\implies A+B\: can\:do\:a\: work=3\dfrac{3}{7}\:hours}⟹A+Bcandoawork=3
7
3
hours
Explanation:
please mark me as branliest