Math, asked by jatindersoni, 1 year ago

if b cos thetha =a,prove cosec thetha+cot thetha
=√b+a/√b-a​

Answers

Answered by Anonymous
3

SOLUTION:-

Given,

b \: cos \theta = a \\  =  > cos \theta =  \frac{a}{b}

Now,

sin \theta =  \sqrt{1 -  {cos}^{2} \theta }  =  \sqrt{1 -  \frac{ {a}^{2} }{ {b}^{2} } }  =  \frac{ \sqrt{ {b}^{2}  -  {a}^{2}  }  }{b}

Now,

cosec \theta =  \frac{1}{sin \theta}  =  \frac{b}{ \sqrt{ {b}^{2} -  {a}^{2}  } }  \\  \\  cot \theta =  \frac{cos \theta}{sin \theta}  =  \frac{ \frac{a}{b} }{ \sqrt{ {b}^{2}  -  \frac{ {a}^{2} }{b} } }  =  \frac{a}{ \sqrt{ {b}^{2} -  {a}^{2}  } }  \\  \\ cosec \theta + cot \theta =  \frac{b}{ \sqrt{ {b}^{2}   -  {a}^{2}  } }  +  \frac{a}{ \sqrt{ {b}^{2}  -  {a}^{2} } }   =  \frac{b + a}{ \sqrt{ {b}^{2} -  {a}^{2}  } }  \\  \\   =  >  \frac{(b + a)}{ \sqrt{b + a}   \sqrt{b + a} }  \\  \\  =  >  \frac{ \sqrt{b + a} }{ \sqrt{b - a} }

Proved.

Hope it helps ☺️

Similar questions