If b is the mean proportional between a and c, prove that: a²-b²+c²/a-² - b-² +c_2 =b⁴.
Answers
Answered by
12
Step-by-step explanation:
Hi ,
If b is the mean Proportion of a and
b then
b² = ac ---( 1 )
Now ,
( a² + b² + c² )/( a^-2 + b^-2 + c^-2 )
= ( a² + b² + c² )/( 1/a² + 1/b² + 1/c² )
= (a² + ac + c² )/( 1/a² + 1/ac + 1/c² )
[ From ( 1 ) ]
= (a² + ac + c²)/[(c²+ ac + a²)/a²c²
= [ a²c² (a²+ ac+ c²)/( a² + ac + c² )]
= a²c²
I hope this helps you.
♠️♠️♠️♠️♠️♠️♠️♠️♠️
Answered by
12
solution :
a:b = b:c
so, b² = ac
L.H.S =
=(ac)² =(b²)² =b⁴ =RHS.
Thanks ❤️
Similar questions