Math, asked by darkbfhk, 11 months ago

If b is the mean proportional between a and c, prove that: a²-b²+c²/a-² - b-² +c_2 =b⁴.​

Answers

Answered by hardikrakholiya21
12

Step-by-step explanation:

Hi ,

If b is the mean Proportion of a and

b then

b² = ac ---( 1 )

Now ,

( a² + b² + c² )/( a^-2 + b^-2 + c^-2 )

= ( a² + b² + c² )/( 1/a² + 1/b² + 1/c² )

= (a² + ac + c² )/( 1/a² + 1/ac + 1/c² )

[ From ( 1 ) ]

= (a² + ac + c²)/[(c²+ ac + a²)/a²c²

= [ a²c² (a²+ ac+ c²)/( a² + ac + c² )]

= a²c²

I hope this helps you.

♠️♠️♠️♠️♠️♠️♠️♠️♠️

Answered by DimpleDoll
12

solution :

a:b = b:c

so, b² = ac

L.H.S =

 \frac{  {a}^{2}  - ac +  {c}^{2} }{ \frac{1  }{ {a}^{2}  }  -  \frac{1}{ac} +  \frac{1}{ {c}^{2} }  }  =  \frac{ {a}^{2}  - ac +  {c}^{2} }{  \frac{ {c - ac + a}^{2} }{ {a}^{2}  {c}^{2} } }  =  {a}^{2}  {c}^{2}  </p><p></p><p>

=(ac)² =(b²)² =b⁴ =RHS.

Thanks ❤️

Similar questions