if B minus C whole square, C minus a whole square A minus b whole square are in AP then prove that one by b minus C, 1 by C minus A One by a minus b are also in AP
Answers
Answered by
54
Solution :
Given (b-c)², (c-a)²,(a-b)² are in A.P
(c-a)² - (b-c)² = (a-b)² - (c-a)²
=> [(c-a)+(b-c)][(c-a)-(b-c)]
= [(a-b)+(c-a)][(a-b)-(c-a)]
=> [-(a-b)[(c-a)-(b-c)] = [-(b-c)][(a-b)-(c-a)]
=> - (a-b)(c-a)+(a-b)(b-c)
= -(b-c)(a-b) + (b-c)(c-a)
=> 2(a-b)(b-c) = (b-c)(c-a) + (b-c)(a-b)
Divide both sides with (a-b)(b-c)(c-a),
we get
=> 2/(c-a) = 1/(a-b) + 1/(c-a)
Therefore ,
1/(b-c) , 1/(c-a) , 1/(a-b) are in A.P
••••
=>
Given (b-c)², (c-a)²,(a-b)² are in A.P
(c-a)² - (b-c)² = (a-b)² - (c-a)²
=> [(c-a)+(b-c)][(c-a)-(b-c)]
= [(a-b)+(c-a)][(a-b)-(c-a)]
=> [-(a-b)[(c-a)-(b-c)] = [-(b-c)][(a-b)-(c-a)]
=> - (a-b)(c-a)+(a-b)(b-c)
= -(b-c)(a-b) + (b-c)(c-a)
=> 2(a-b)(b-c) = (b-c)(c-a) + (b-c)(a-b)
Divide both sides with (a-b)(b-c)(c-a),
we get
=> 2/(c-a) = 1/(a-b) + 1/(c-a)
Therefore ,
1/(b-c) , 1/(c-a) , 1/(a-b) are in A.P
••••
=>
nalinsingh:
Awesome Answer Sir !! :-)
Answered by
37
Answer:
Then,
(c-a+b-c)(c-a-b+c)=(a-b+c-a)(a-b-c+a)
-(a-b)[(c-a)-(b-c)]=-(b-c)[(a-b)-(c-a)]
(a-b)(b-c)-(a-b)(c-a)=(b-c)(c-a)-(a-b)(b-c)
divide both sides by (a-b)(b-c)(c-a)
This implies
Similar questions
Math,
7 months ago
Math,
7 months ago
Chemistry,
7 months ago
Social Sciences,
1 year ago
English,
1 year ago