Math, asked by 1073734, 4 months ago

if b tan 30+ bcot 30=1, then B =?​

Answers

Answered by shizashaheem
1

Answer:

b = \frac{\sqrt{3} }{4}

Step-by-step explanation:

tan 30 = \frac{1}{\sqrt{3} }

cot 30 = \sqrt{3}

given : b tan 30+ b cot 30=1

∴ by substituting,

b x \frac{1}{\sqrt{3} } + b x \sqrt{3} = 1

\frac{b}{\sqrt{3} } + b\sqrt{3} = 1

finding lcm and multiplying in the numerator and denominator

lcm = \sqrt{3}

\frac{b}{\sqrt{3} } + \frac{b\sqrt{3} }{1} x \frac{\sqrt{3} }{\sqrt{3} } = 1

\frac{b}{\sqrt{3} } + \frac{3b}{\sqrt{3} } = 1

\frac{b+3b}{\sqrt{3} }= 1

b+3b = \sqrt{3}

4b = \sqrt{3}

∴ b = \frac{\sqrt{3} }{4}

hope it helped! please mark as brainliest <3

Similar questions