Math, asked by sp677097, 3 months ago

If base angle of an isosceles triangle is 15° more than its Vertical angle find all the angles of the triangle .​

Answers

Answered by Anonymous
30

Given:

  • Base angle of an isosceles triangle is 15°.

To Find:

  • All angles of triangle

Solution:

☯ Let vertical angle of the isosceles triangle "x".

  • Each base angle = x + 15°

As we know:

★ Sum of angle of a triangle is 180°.

According to the question:

→ x + 15° + x + 15° + x° = 180° [Sum of angles of a triangle]

→ 3x + 30° = 180°

→ 3x = 180° - 30°

→ 3x = 150°

→ x = 150°/3

x = 50°

Hence,

  • Vertical angle = 50°
  • Each base angle = 50° + 15° = 65°

Anonymous: Great
Anonymous: Thanks :meow_blush:
Anonymous: Perfect (◔‿◔)
Anonymous: Thankuu :))
Answered by Anonymous
10

\large\underline\bold{ANSWER \red{\huge{\checkmark}}}

\pink{\overbrace{ \underbrace{ \red{\mid\star\mid \:\:    \purple{ vertical\:angle(a)= \orange{ 50^{ \circ}} base\:angle(b,c)=\orange{ 65^{ \circ}}  } }  \:\: \red{\mid\star\mid}}}}\\ \\ \\

\large{ \purple{ \underbrace{ \pink{ \underline{\mathcal{explanation\:in\:details:-}}} }}} \\ \\

\large\underline\bold{GIVEN,}\\

   \dashrightarrow base\:angle\:of\:triangle(isosceles )is\:\: \pink{ 15^{\circ}}

\large\underline\bold{TO\:FIND,}

\green{ \circ\: all \:the\:angles\:of\:the\:triangle.} \\ \\

 \bf{ \mathcal{ \underline{\orange{We\:Know,}}}} \\ \\ \rm{ \boxed{ \underline{ \red{ sum\:of\:angle\:of\:a\:triangle\:is\:180^{ \circ} }}}} \\ \\

\large\underline\bold{SOLUTION,}\\ \\

\natural \: \text{ as given in the question , } \\  \circ\:\text{  base angle of an isosceles triangle is 15° more } \\

 \therefore let\:vertical\:angle\:be \: x^{\circ}  \\ \\ \therefore \:base\:angle\:formed\:will\:be\: \red{ \rightarrow  \: x+15 }  \\

\circ\: an\: isosceles\: triangle \: has \:two \:equal \\ \:sides\:and\:two\:equal\:angels. \\ \\ therefore \:according\:to\:the\: statement\: \\ \\\red{ \diamondsuit} \: \: two \:angles\:of\:same\:angles\:will\:be\: \red{ x+15}   \\ \\ \leadsto a= x +15 \\ \leadsto b= x+15 \\ \leadsto c= x \\

   \\  \\ \clubsuit \: \: \blue{ by\:angle\:sum\:property\:of\:a\:triangle } \\ \\  \mid\implies x+15+x+15+x= 180^{ \circ } \\ \\  \mid\implies x+x+x+15+15=180^{ \circ} \\ \\  \mid\implies 3x+30=180^{ \circ} \\ \\ \mid\implies 3x=180-30 \\ \\ \mid\implies 3x= 150^{ \circ } \\ \\ \mid\implies x= \dfrac{150}{ 3} \\ \\ \mid\implies x=  \cancel\dfrac{ 150}{3} \\ \\ \mid\implies x=50^{ \circ} \\ \\ \underline{ vertical\:angle\:of\:triangle\:is\:50^{ \circ} } \\ \\ \rm{ \boxed{ \red{ \overline{\underline{ \mid\heartsuit\mid \:\: x= 50^{ \circ} \mid\heartsuit \mid }}}}} \\ \\ \:base\:angle\:formed\:is\: \red{ \rightarrow  \: x+15 } \\ \\ \mid\leadsto50+15 =  \rm{ \underline{  \green{\bold{65^{ \circ}}}}}

   \\ \\


prince5132: Nice !!
cαlypso: Nice :)
Glorious31: Good
Similar questions