Math, asked by ayash3079, 4 months ago

if base radius of a right circular cylinder is halved keeping the height same find the ratio of the volume of the refused cylinder to that of the original cylinder

Answers

Answered by mathdude500
2

Given Question : -

  • If base radius of a right circular cylinder is halved keeping the height same, find the ratio of the volume of the reduced cylinder to that of the original cylinder.

Given :-

  • The radius is reduced to half.
  • Height remains the same.

To find :-

  • Ratio of the volume of the reduced cylinder to that of the original cylinder.

Formula Used :-

{{ \boxed{\large{\bold\green{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

where,

  • r = radius of cylinder
  • h = height of cylinder

Solution :-

Case 1.

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{radius \: of \: cylinder \: be \:  r \: units} \\ &\sf{height \: of \: cylinder \: be \: h \: units} \end{cases}\end{gathered}\end{gathered}

\bf \:So, Volume \:  \:  of  \: Cylinder ,V_1 = \pi \:  {r}^{2} h \: ... \: (1)

Case 2.

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{radius \: of \: cylinder \: be \:  \dfrac{r}{2}  \: units} \\ &\sf{height \: of \: cylinder \: be \: h \: units} \end{cases}\end{gathered}\end{gathered}

\bf \:So, Volume \:  of  \: Cylinder  \: ,V_2 = \pi \:  {(\dfrac{r}{2} )}^{2} h

\bf\implies \:V_2 = \pi \: \dfrac{ {r}^{2} }{4} h \: .... \: (2)

☆ Now

\bf \:Consider \: V_2 : V_1

\bf\implies \:\pi\dfrac{ {r}^{2} }{4} h : \pi \:  {r}^{2} h

\bf\implies \:\dfrac{1}{4}  : 1

\bf\implies \:1 : 4

___________________________________________

\large \red{\bf \:  ⟼ Explore  \: more } ✍

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions