If bcos A = a, then prove that cosec A + cot A =
Answers
Answer:
Given
bcos A = a
\underline{\underline{\bf{\maltese\:\:To\: Prove}}}
✠ToProve
cosec A + cot A = \sqrt{ \frac{b + a}{b - a} }
b−a
b+a
\underline{\underline{\bf{\maltese\:Formula \: used}}}
✠Formulaused
AC² = AB² - BC²
\underline{\underline{\bf{\maltese\:Proof}}}
✠Proof
⇢bcos A = a
⇢cos A = \bf \frac{a}{b}
b
a
AC² = AB² - BC²
AC² = b² - a²
AC = \bf\sqrt{ {b}^{2} - {a}^{2} }
b
2
−a
2
⇢cosec A = \bf\frac{hypotenuse}{perpendicular}
perpendicular
hypotenuse
⇢cosec A = \bf\frac{b}{ \sqrt{ {b}^{2} - {a}^{2} } }
b
2
−a
2
b
⇢cot A = \bf\frac{base}{perpendicular}
perpendicular
base
⇢cot A = \bf\frac{a}{ \sqrt{ {b}^{2} - {a}^{2} } }
b
2
−a
2
a
⇢cosec A + cot A = \bf\frac{b + a}{ \sqrt{ {b}^{2} - {a}^{2} } }
b
2
−a
2
b+a
⇢cosec A + cot A = \bf\sqrt{ \frac{b \: + a}{b - a} }
b−a
b+a
HENCE PROVED !!