If bcx=cay=abz, then proof that (ax+by)/(a²+b²)=(by+cz)/(b²+c²)=(cz+ax)/(c²+a²).
please solve this..
Answers
Answered by
3
Answer:
Given, ax+by+cz=0→(1)
bcx+cay+abz=0→(2)
xyz+abc(a3x+b3y+c3z)=0→(3)
(1)×bc−(2)×a⇒abcx+b2cy+bc2z−abcx−ca2y−a2b2=0
c(b2−a2)y=b(a2−c2)z
(1)×ac−(2)×b⇒a2cx+abcy+ac2z−b2cx−abcy−ab2z=0
c(a2−b2)x=a(b2−c2)z
(1)×ab−(2)×c⇒a2bx+ab2y+Given, ax+by+cz=0→(1)
bcx+cay+abz=0→(2)
xyz+abc(a3x+b3y+c3z)=0→(3)
(1)×bc−(2)×a⇒abcx+b2cy+bc2z−abcx−ca2y−a2b2=0
c(b2−a2)y=b(a2−c2)z
(1)×ac−(2)×b⇒a2cx+abcy+ac2z−b2cx−abcy−ab2z=0
c(a2−b2)x=a(b2−c2)z
(1)×ab−(2)×c⇒a2bx+ab2y+
Similar questions