If θ be acute angle and 7sin²θ + 3cos²θ = 4, then the value of tanθ is
Answers
Answered by
6
Hi ,
Here I am using A instead of theta.
7sin²A + 3cos² A = 4
7sin² A + 3 ( 1 - sin² A ) = 4
7sin² A + 3 - 3sin² A = 4
4sin²A = 4 - 3
4sin² A = 1
Sin² A = 1/4
SinA = √1/4
SinA = 1/2
SinA = sin 30°
A = 30°
Tan A = tan 30°
= 1/√3
I hope this helps you.
:)
Here I am using A instead of theta.
7sin²A + 3cos² A = 4
7sin² A + 3 ( 1 - sin² A ) = 4
7sin² A + 3 - 3sin² A = 4
4sin²A = 4 - 3
4sin² A = 1
Sin² A = 1/4
SinA = √1/4
SinA = 1/2
SinA = sin 30°
A = 30°
Tan A = tan 30°
= 1/√3
I hope this helps you.
:)
Answered by
0
Answer:
tan Θ = tan30° = 1/√3
Step-by-step explanation:
7sin²Θ + 3cos² Θ = 4
7sin² Θ + 3 ( 1 - sin² Θ ) = 4
7sin² Θ + 3 - 3sin² Θ = 4
4sin²Θ = 4 - 3
4sin² Θ = 1
sin² Θ = 1/4
sinΘ = √1/4
sinΘ = 1/2
sinΘ = sin30°
Θ = 30°
tan Θ = tan30°
= 1/√3
Similar questions