Math, asked by Mister360, 3 months ago

If θ be acute angle and cosθ = 15/17, then the value of cot (90° - θ) is

Answers

Answered by GeniusYH
12

Answer:

\frac{8}{15}

Step-by-step explanation:

Given :

0° < θ < 90°

cosθ = 15/17

Procedure :

sin²θ + cos²θ = 1

⇒ sin²θ = 1 - cos²θ

⇒ sin²θ = 1 - (\frac{225}{289})

⇒ sin²θ = \frac{64}{289}

∴ sinθ = ± \frac{8}{17}

The value of sinθ cannot be negative as given that θ must be an acute angle.

[As sin(0°) = 0

sin(90°) = 1

sin function is increasing from 0 to 1, when θ is increasing from 0° to 90°.]

∴ sinθ = \frac{8}{17}

Let 90° - θ be x

sin(90° - θ) = cosθ = 15/17

∴ sin(x) = \frac{15}{17}

⇒ csc(x) = \frac{17}{15}

As csc²θ - cot²θ = 1,

⇒ cot²θ = csc²θ - 1

⇒ cot²(x) = \frac{289}{225} - 1

⇒ cot²(x) = \frac{64}{225}

⇒ cot(x) = ±\frac{8}{15}

[Again cot(x) cannot be negative as θ is acute}

∴ cot(x) = \frac{8}{15}

∴ cot(90° - θ) = \frac{8}{15}

Thanks !

Answered by TheDiamondBoyy
13

Given:-

  • θ is acute angle.

  • cosθ = 15/17

To Find:-

  • the value of cot (90° - θ)

Solution:-

cosθ \: =   \frac{15  \:  \:  \:  \: \:  = \:  \: base }{17 \:  \:  \:  \:  \:  =  \: hypo}  \:  </p><p>

perpendicular = 8

≈&gt; Cot(90° - ∅)

⇒tanθ \: = \:  \frac{8}{15} [∴tanθ= \frac{p}{b} ] \\

Attachments:
Similar questions