Math, asked by Anonymous, 3 months ago

If θ be acute angle and cosθ = 15/17, then the value of cot (90° - θ) is?? nhi yr nhi h hm ☺❤✌ always keep smiling ☺​

Answers

Answered by Anonymous
100

Given :

If θ be acute angle and cos θ = 15/17.

To find :

  • The value of cot (90° - θ) is what ?

Solution :

  • Cosθ = 15/17

METHOD : 1

According to the trigonometry identities

  • cos²θ + sin²θ = 1

→ sin²θ = 1 - cos²θ

→ sinθ = √1 - cos²θ

  • Put the value of cosθ

→ sinθ = √1 - (15/17)²

→ sinθ = √1 - 225/289

→ sinθ = √289 - 225/289

→ sinθ = √64/289

→ sinθ = 8/17

  • Now the value of cot (90° - θ)

→ cot (90° - θ)

→ tanθ

→ sinθ/cosθ

  • Substitute the values

→ 8/17/15/17

→ 8/17 × 17/15

→ 8/15

━━━━━━━━━━━━━━━━━━━━━━━━

  • METHOD : 2

Solve this question by the Pythagoras theorem

★(hypotenuse)²=(base)²+ (perpendicular)²

  • As we know that

→ cos θ = base/hypotenuse

→ cosθ = 15/17

Let the perpendicular be x , base be 15x and hypotenuse be 17x

  • According to the theorem

→ (17x)² = (15x)² + (x)²

→ 289x² = 225x² + x²

→ x² = 289x² - 225x²

→ x² = 64x²

→ x = √64x² = 8x

  • Now the value of cot (90° - θ)

→ cot (90° - θ)

→ tanθ

→ perpendicular/base

→ 8x/15x

→ 8/15

•°• The value of cot (90° - θ) is 8/15

━━━━━━━━━━━━━━━━━━━━━━━━

Answered by SavageBlast
195

Given:-

  • θ is an acute angle

  • cos θ = \dfrac{15}{17}

To Find:-

  • Value of cot (90° - θ)

Solution:-

As Given,

cos θ = \dfrac{15}{17} ____{1}

And as we know,

⟹\:cos \:θ = \dfrac{Base}{Hypotenuse}____{2}

From {1} and {2},

⟹\:\dfrac{15}{17}= \dfrac{Base}{Hypotenuse}

So,

  • Base = 15

  • Height = 17

Using Pythagoras theorem,

{\boxed{Hypotenuse² = Perpendicular ² + Base²}}

⟹\: (17)² = Perpendicular² + (15)²

⟹ \:Perpendicular² = 289 - 225

⟹ \:Perpendicular = \sqrt{64}

⟹ \:Perpendicular = 8

⟹\:cot\:(90-θ)=tan\:θ ____{3}

As we know,

⟹ \:tan\: θ = \dfrac{Perpendicular}{Base}

⟹\:tan\: θ = \dfrac{8}{15}

From {3},

⟹\:cot \:(90° - θ) = \dfrac{8}{15}

Hence, the value of cot (90° - θ) is {\bold{{\dfrac{8}{15}.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions