Math, asked by nileshkumar236p9f39k, 11 months ago

If β be the length of the latus rectum of the hyperbola 16x^2-9x^2+32x+36y-164=0 then3β is

Answers

Answered by BrainlyConqueror0901
0

CORRECT QUESTION :

If β be the length of the latus rectum of the hyperbola 16x^2-9y^2+32x+36y-164=0 then3β is.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{3\beta=39.21\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: hyperbola=  16x^{2}-9y^{2}+36y+32x-164=0 } \\ \\ \tt{:\implies Latus\:rectum=\beta} \\\\ \red {\underline \bold{To \: Find: }}\\   \tt{:\implies Eccentricity(e)=?}\\\\ \tt{:\implies Foci=?}\\ \\ \tt {: \implies 3\beta=?}

• According to given question :

 \tt {:  \implies  16{x}^{2}  - {9y}^{2}  + 36y+32x -164= 0} \\  \\  \tt{: \implies  16{x}^{2} +32x + 16 - 16-9 {y}^{2}  + 36y  + 36 -36-164= 0} \\  \\  \tt{:  \implies (4x + 4)^{2}  -(3y  + 6)^{2}   = 216} \\  \\ \tt{ :\implies  \frac{(x +1)^{2} }{\frac{216}{16}}  -  \frac{(y + 2) ^{2} }{ \frac{216}{9} }  = 1 } \\  \\   {: \implies  \frac{ {(x+ 1)}^{2} }{13.5}  +  \frac{ {(y + 2)}^{2} }{24}  = 1} \\  \\

 \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   -  \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  13.5} \\   \\   \tt{\circ \:  {b}^{2}  = 24}

 \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {b}^{2}  }{a} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 24 }{3.67} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  13.07\:units}}\\\\ \tt{:\implies 3\beta=3\times 13.07}\\\\ \green{\tt{\therefore 3\beta=39.21\:units}}

Similar questions