Math, asked by shivam181199, 4 months ago

if α, β be the roots of ax^2-x+a=0 find the equation whose roots are α/β, β/α.​

Answers

Answered by varadad25
9

Answer:

The required quadratic equation is \displaystyle{\sf\:a^2\:x^2\:+\:2a^2x\:=\:0}.

Step-by-step-explanation:

The given quadratic equation is \displaystyle{\sf\:ax^2\:-\:x\:+\:a\:=\:0}

The roots of the given quadratic equation are \displaystyle{\sf\:\alpha\:\&\:\beta}.

We have to find a quadratic equation whose roots are \displaystyle{\sf\:\dfrac{\alpha}{\beta}\:\&\:\dfrac{\beta}{\alpha}}

Now,

\displaystyle{\sf\:ax^2\:-\:x\:+\:a\:=\:0}

Comparing with \displaystyle{\sf\:ax^2\:+\:bx\:+\:c\:=\:0}, we get,

\displaystyle{\bullet\:\sf\:a\:=\:a}

\displaystyle{\bullet\:\sf\:b\:=\:-\:1}

\displaystyle{\bullet\:\sf\:c\:=\:a}

Now, we know that,

\displaystyle{\pink{\sf\:Sum\:of\:roots\:(\:\alpha\:+\:\beta\:)\:=\:-\:\dfrac{b}{a}}}

\displaystyle{\implies\sf\:\alpha\:+\:\beta\:=\:-\:\left(\:\dfrac{-\:1}{a}\:\right)}

\displaystyle{\implies\sf\:\alpha\:+\:\beta\:=\:\dfrac{1}{a}\:\:\:-\:-\:-\:(\:1\:)}

Now,

\displaystyle{\pink{\sf\:Product\:of\:roots\:(\:\alpha\:.\:\beta\:)\:=\:\dfrac{c}{a}}}

\displaystyle{\implies\sf\:\alpha\:.\:\beta\:=\:\cancel{\dfrac{a}{a}}}

\displaystyle{\implies\sf\:\alpha\:.\:\beta\:=\:1\:\:\:-\:-\:-\:(\:2\:)}

We have to find a quadratic equation whose roots are \displaystyle{\sf\:\dfrac{\alpha}{\beta}\:\&\:\dfrac{\beta}{\alpha}}

The quadratic equation is in form

\displaystyle{\pink{\sf\:x^2\:-\:(\:\alpha\:+\:\beta\:)\:x\:+\:\alpha\:.\:\beta\:=\:0}}

\displaystyle{\implies\sf\:x^2\:-\:\left(\:\dfrac{\alpha}{\beta}\:+\:\dfrac{\beta}{\alpha}\:\right)\:x\:+\:\dfrac{\cancel{\alpha}}{\cancel{\beta}}\:\times\:\dfrac{\cancel{\beta}}{\cancel{\alpha}}\:=\:0}

\displaystyle{\implies\sf\:x^2\:-\:\left(\:\dfrac{\alpha^2\:+\:\beta^2}{\alpha\:.\:\beta}\:\right)\:x\:+\:1\:=\:0\:\:\:-\:-\:-\:[\:From\:(\:2\:)\:]}

\displaystyle{\implies\sf\:\left[\:\dfrac{(\:\alpha\:+\:\beta\:)^2\:-\:2\:\alpha\:\beta}{\alpha\:.\:\beta}\:\right]\:x\:+\:1\:=\:0\:\:\:-\:-\:-\:[\:(\:a\:+\:b\:)^2\:=\:a^2\:+\:2ab\:+\:b^2\:]}

\displaystyle{\implies\sf\:x^2\:-\:\left[\:\dfrac{\left(\:\dfrac{1}{a}\:\right)^2\:-\:2\:\times\:1}{1}\:\right]\:x\:+\:1\:=\:0\:\:\:-\:-\:-\:[\:From\:(\:1\:)\:]}

\displaystyle{\implies\sf\:x^2\:-\:\left(\:\dfrac{1}{a^2}\:-\:2\:\right)\:x\:+\:1\:=\:0}

\displaystyle{\implies\sf\:x^2\:-\:\left(\:\dfrac{1\:-\:2a^2}{a^2}\:\right)\:x\:+\:1\:=\:0}

\displaystyle{\implies\sf\:a^2\:x^2\:-\:\cancel{1}\:+\:2a^2x\:+\:\cancel{1}\:=\:0}

\displaystyle{\implies\underline{\boxed{\red{\sf\:a^2\:x^2\:+\:2a^2x\:=\:0}}}}

The required quadratic equation is \displaystyle{\sf\:a^2\:x^2\:+\:2a^2x\:=\:0}.

Answered by mathdude500
3

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Since \:  \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: the \: equation \:  {ax}^{2}  - x + a = 0. \\

On comparing it with the equation ax² + bx + c = 0, we get

♡ a = a

♡ b = - 1

♡ c = a

Sum \: of \: zeroes \:  =  \alpha  +  \beta  =  -  \frac{b}{a}  =  -  \frac{ -1 }{a}  =  \frac{1}{a}

\small\bold\red{Product \: of \: zeroes \:  =  \alpha  \beta  \:  =  \frac{c}{a} =  \frac{a}{a}   = 1}

Now, we have to find a quadratic equation whose roots are

 \frac{ \alpha }{ \beta }  \: and \:  \frac{ \beta }{ \alpha }

\small\bold\red{Sum  \: of  \: zeroes \:  = } \\ \small\bold\red{ \frac{ \alpha }{ \beta } +  \frac{ \beta }{ \alpha }  } \\ \small\bold\red{ =  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta } } \\ \small\bold\red{ =  \frac{ {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  }{ \alpha  \beta } } \\ \small\bold\red{  =  \frac{ {( \frac{1}{a} )}^{2}  - 2}{1} } \\ \small\bold\red{ =  \frac{1 -  {2a}^{2} }{ {a}^{2} } }

\small\bold\red{Product \: of \: zeroes \:  = } \\ \small\bold\red{ =  \frac{ \alpha }{ \beta } \times  \frac{ \beta }{ \alpha }  } \\ \small\bold\red{ = 1}

Now the required quadratic equation is

\small\bold\red{ {x}^{2} - ( \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha } )x + ( \frac{ \alpha }{ \beta }   \times  \frac{ \beta }{ \alpha }) = 0 } \\ \small\bold\red{ =  >  \:  {x}^{2} - ( \frac{1  -  {2a}^{2}}{ {a}^{2} } ) x + 1 = 0} \\ \small\bold\red{}\small\bold\red{ =  >  \:   {a}^{2}  {x}^{2}  - x +  {2a}^{2} x +  {a}^{2}  = 0}

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

\red{\textsf{(✪MARK BRAINLIEST✿)}} \\ \huge\fcolorbox{aqua}{aqua}{\red{FolloW ME}}

Similar questions