Math, asked by hussainrayan55, 2 months ago

If α, β be the roots of ax2

+bx +c = 0, then value of α2

+ β2

is:​

Answers

Answered by amansharma264
32

EXPLANATION.

α, β be the roots of the quadratic equation.

⇒ ax² + bx + c.

As we know that,

Sum of the zeroes of quadratic equation.

⇒ α + β = -b/a.

Products of the zeroes of quadratic equation.

⇒ αβ = c/a.

To find :

α² + β².

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ α² + β² = (α + β)² - 2αβ.

Put the values in the equation, we get.

⇒ α² + β² = (-b/a)² - 2(c/a).

⇒ α² + β² = b²/a² - 2c/a.

⇒ α² + β² = b² - 2ac/a².

                                                                                                                       

MORE INFORMATION.

Conjugates roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by Itzheartcracer
20

Given :-

If α and β are roots of ax² + bx + c

To Find :-

α² + β²

Solution :-

We know that

Sum = α + β = -b/a

Here

b = b

a = a

Sum = -(b)/a

Sum = -b/a

Product = αβ = c/a

Here

c = c

a = a

Product = c/a

Now

(α + β)² = (α²) + 2αβ + (β)²

(α + β)² = (α² + β²) + 2αβ

(α² + β²) = (α + β)² - 2αβ

α² + β² = (-b/a)² - 2(c/a)

α² + β² = (-b/a)² - 2 × c/a

α² + β² = (b²/a²) - 2c/a

α² + β² =  b² - 2ac/a²

Similar questions