Math, asked by singhaayush238, 1 year ago

If beta and 1/beta are zeroes of the polynomial (a^2+a)x^2+61x+6a, find values of Alfa and beta

Answers

Answered by hukam0685
9

 \beta  +  \frac{1}{ \beta }  =  \frac{ - 61}{ {a}^{2}  + a}  \\  \beta  \times  \frac{1}{ \beta }  =  \frac{6a}{ {a}^{2}  + a}  \\  \frac{6a}{ {a}^{2}  + a}  = 1 \\ 6a =  {a}^{2}  + a \\  {a}^{2}  + a - 6a = 0 \\  {a}^{2}  - 5a = 0 \\ a(a - 5) = 0 \\ a = 0 \\ a - 5 = 0 \\ a = 5
Similar questions