Math, asked by RashiBhardwaj, 10 months ago


If both a &b are rational number, find the values of a and b in the following :-

5+ √3 / 7-4 √4 = a+√3 b

Answers

Answered by trashikagoyal
1

Step-by-step explanation:

5 +  \frac{ \sqrt{3} }{7}  - 4 \sqrt{4}  = a +  \sqrt{3} b

{ \frac{35 +  \sqrt{3}  - 28 \sqrt{4} }{7}  = a +  \sqrt{3} b }

 \frac{35  +   \sqrt{3}  -(28 \times 2) }{7}  =  \frac{35 - 56 +  \sqrt{3} }{7}  =  \frac{ - 21 +  \sqrt{3} }{7}

 \frac{ - 21}{7}  +  \frac{ \sqrt{3} }{7}  =  - 3 +  \frac{1}{7}  \sqrt{3 }  = a +  \sqrt{3} b

therefore \: a =  - 3 \:  \: b =  \frac{1}{7}

Answered by Anonymous
1

Answer:

a=-3,b=1/7

Step-by-step explanation:

mark as brainliest.......

Similar questions