Math, asked by avnishpratapsingh744, 10 months ago

If both a & b are rational number than find the value of a and b if
\frac{5+2\sqrt{3} }{7+4\sqrt{3} } = a + b\sqrt{3}

Answers

Answered by djguljas
2

Answer:

a=11 and b=-6.

Step-by-step explanation:

 \frac{5   + 2\sqrt{3} }{7 + 4 \sqrt{3} }  = \frac{5   + 2\sqrt{3} }{7 + 4 \sqrt{3} } \times  \frac{7 -  4\sqrt{3} }{7 -  4\sqrt{3}}  =  \frac{(5   + 2\sqrt{3})(7 + 4 \sqrt{3})}{ {(7)}^{2} - {(4 \sqrt{3}) }^{2}   }  \\  \\  \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48}  = 11 - 6 \sqrt{3}

on comparing 11-6√3 with a+b√3.

we get a=11 and b=-6.

Similar questions