Math, asked by RevolutionGundi, 3 months ago

if both a and b are rational number.. find a and b

  \tt\frac{ \sqrt{2}  +  \sqrt{3} }{ \sqrt[3]{2}  -  \sqrt[2]{3}  }  = a -  \sqrt[b]{6}  \\

Answers

Answered by DynamicCrystal
7

AnsweR :

 \pink {  \boxed{\sf \large \purple{ \: a = 2 \: and \: b = - 5/6}}}

SolutioN :

Multiplying the numerator and denominator by rationalisation factor of the denominator.

 \sf =  \frac{ \sqrt{2}  +  \sqrt[2]{3} }{ \sqrt[3]{2} -  \sqrt[2]{3}  }  \times  \frac{ \sqrt[3]{2} +  \sqrt[2]{3}  }{ \sqrt[3]{2}  +  \sqrt[2]{3} }  \\  \\  \sf  = \frac{ (\sqrt{2} +  \sqrt{3} )( \sqrt[3]{2} +  \sqrt[2]{3} )  }{ (\sqrt[3]{2} -  \sqrt[2]{3}  )( \sqrt[3]{2}  +  \sqrt[2]{3}) }  \\  \\  \sf =  \frac{ \sqrt{2} \times  \sqrt[3]{2}  +  \sqrt{2}   \times  \sqrt[2]{3}  +  \sqrt{3} \times  \sqrt[3]{2}  +  \sqrt{3}  \times  \sqrt[2]{3}  }{ {( \sqrt[3]{2}) }^{2}  -  {( \sqrt[2]{3}) }^{2} }  \\  \\  \sf =  \frac{ \sqrt[3]{2 \times 2}  +  \sqrt[2]{3 \times 2}  +  \sqrt[3]{3 \times 2} +  \sqrt[2]{3 \times 3}  }{9 {( \sqrt{2)} - 4 {( \sqrt{3} )}^{2} } }  \\  \\  \sf =  \frac{3 \times 2 +  \sqrt[2]{6}  +  \sqrt[3]{6} + 2 \times 3 }{9 \times 2 - 4 \times 3}  \\  \\  \sf =  \frac{6 + (2 + 3) \sqrt{6} + 6 }{18 - 12}  =  \frac{12 +  \sqrt[5]{6} }{6}  = 2 +  \frac{5}{6}  \sqrt{6}

 \sf \therefore \frac{ \sqrt{2} +  \sqrt{3}  }{ \sqrt[3]{2} -  \sqrt[2]{3}  }  = a - b \sqrt{6}  \\

 \sf = 2 +  \frac{5}{6}  \sqrt{6}  = a - b \sqrt{6}  \\   \\  \sf = a - b \sqrt{6}  = 2 - ( - 5/6) \sqrt{6}  \\  \\  \sf \large \bold{a = 2 \: and \: b =  - 5/6}

______________________

Answered by Thekohinoor
3

AnsweR :

 \pink {  \boxed{\sf \large \purple{ \: a = 2 \: and \: b = - 5/6}}}

SolutioN :

Multiplying the numerator and denominator by rationalisation factor of the denominator.

 \sf =  \frac{ \sqrt{2}  +  \sqrt[2]{3} }{ \sqrt[3]{2} -  \sqrt[2]{3}  }  \times  \frac{ \sqrt[3]{2} +  \sqrt[2]{3}  }{ \sqrt[3]{2}  +  \sqrt[2]{3} }  \\  \\  \sf  = \frac{ (\sqrt{2} +  \sqrt{3} )( \sqrt[3]{2} +  \sqrt[2]{3} )  }{ (\sqrt[3]{2} -  \sqrt[2]{3}  )( \sqrt[3]{2}  +  \sqrt[2]{3}) }  \\  \\  \sf =  \frac{ \sqrt{2} \times  \sqrt[3]{2}  +  \sqrt{2}   \times  \sqrt[2]{3}  +  \sqrt{3} \times  \sqrt[3]{2}  +  \sqrt{3}  \times  \sqrt[2]{3}  }{ {( \sqrt[3]{2}) }^{2}  -  {( \sqrt[2]{3}) }^{2} }  \\  \\  \sf =  \frac{ \sqrt[3]{2 \times 2}  +  \sqrt[2]{3 \times 2}  +  \sqrt[3]{3 \times 2} +  \sqrt[2]{3 \times 3}  }{9 {( \sqrt{2)} - 4 {( \sqrt{3} )}^{2} } }  \\  \\  \sf =  \frac{3 \times 2 +  \sqrt[2]{6}  +  \sqrt[3]{6} + 2 \times 3 }{9 \times 2 - 4 \times 3}  \\  \\  \sf =  \frac{6 + (2 + 3) \sqrt{6} + 6 }{18 - 12}  =  \frac{12 +  \sqrt[5]{6} }{6}  = 2 +  \frac{5}{6}  \sqrt{6}

 \sf \therefore \frac{ \sqrt{2} +  \sqrt{3}  }{ \sqrt[3]{2} -  \sqrt[2]{3}  }  = a - b \sqrt{6}  \\

 \sf = 2 +  \frac{5}{6}  \sqrt{6}  = a - b \sqrt{6}  \\   \\  \sf = a - b \sqrt{6}  = 2 - ( - 5/6) \sqrt{6}  \\  \\  \sf \large \bold{a = 2 \: and \: b =  - 5/6}

______________________

Similar questions