Math, asked by jaslinbrar, 1 year ago

if both a and b are rational numbers,find a and b from the following 3+2 root 3 upon 3-2 root 3 =a+b root 3​

Answers

Answered by Anonymous
5

Answer :-

\boxed{ \sf a =  -  \dfrac{21}{3} , \: b=   - \dfrac{12}{3} }

Explanation :-

Given :-

 \tt  \dfrac{3 + 2 \sqrt{3} }{3 - 2 \sqrt{3} } = a + b \sqrt{3}

And a, b are rational numbers

To find :-

Values of a and b

Solution :-

 \tt  \dfrac{3 + 2 \sqrt{3} }{3 - 2 \sqrt{3} } = a + b \sqrt{3}

Consider RHS

 \tt  \dfrac{3 + 2 \sqrt{3} }{3 - 2 \sqrt{3} }

First rationalise the denominator

The rationalising factor of 3 - 2√3 is 3 + 2√3. So multiply both numerator and denominator with rationalising factor

 \tt  =  \dfrac{3 + 2 \sqrt{3} }{3 - 2 \sqrt{3} } \times  \dfrac{3 + 2 \sqrt{3} }{3 + 2 \sqrt{3} }

 \tt  =  \dfrac{(3 + 2 \sqrt{3})^{2}  }{(3)^{2}  - (2 \sqrt{3})^{2} }

[ Since (x + y)(x - y) = x² - y² and above x = 3, y = 2√3]

 \tt  =  \dfrac{(3 + 2 \sqrt{3})^{2}  }{9  -  {2}^{2}(( \sqrt{3})^{2})}

 \tt  =  \dfrac{(3 + 2 \sqrt{3})^{2}  }{9 - 4(3)}

 \tt  =  \dfrac{(3 + 2 \sqrt{3})^{2}  }{9 - 12}

 \tt  =  \dfrac{(3 + 2 \sqrt{3})^{2}  }{ - 3}

 \tt  =  \dfrac{(3)^{2} + 2(3)(2 \sqrt{3}) +  {(2 \sqrt{3})}^{2} }{ - 3}

[Since (x + y)² = x² + 2xy + y² and above x = 3, b = 2√3 ]

 \tt  =  \dfrac{9 + 12\sqrt{3} + {2}^{2}(( \sqrt{3}) ^{2})}{ - 3}

 \tt  =  \dfrac{9 + 12\sqrt{3} + 4(3)}{ - 3}

 \tt  =  \dfrac{9 + 12\sqrt{3} + 12}{ - 3}

 \tt  =  \dfrac{21 + 12\sqrt{3}}{ - 3}

 \tt  =  \dfrac{21}{ - 3} +  \dfrac{12 \sqrt{3} }{ - 3}

 \tt  =   - \dfrac{21}{3} +  ( - \dfrac{12 \sqrt{3} }{3} )

 \tt  =   - \dfrac{21}{3} - \dfrac{12 \sqrt{3} }{3}

Now consider

 \bf  \dfrac{3 + 2 \sqrt{3} }{3 - 2 \sqrt{3} } = a + b \sqrt{3}

 \tt \implies -\dfrac{21}{3} - \dfrac{12 \sqrt{3} }{3} = a + b \sqrt{3}

Comparing on both sides

 \tt a =  -  \dfrac{21}{3}

 \tt  b \sqrt{3} =   - \dfrac{12 \sqrt{3} }{3}

Cancelling √3 on both sides

 \tt  b=   - \dfrac{12}{3}

\Huge{\boxed{ \sf a =  -  \dfrac{21}{3} , \: b=   - \dfrac{12}{3} }}

Similar questions