Math, asked by 1980satishdeshmuk, 3 months ago

If both a and b are rational numbers, find the value of a and b from the following equation:-

(2+3√5)/(4+5√5)=a+b√5

Answers

Answered by Anonymous
190

Given:-

  • \mathsf{\;\dfrac{2 + 3\sqrt{5}}{4 + 5\sqrt{5}}}

Need To Find Out :-

  • Value of a and b

Solution :-

\mathsf\red {{:\implies\;\dfrac{2 + 3\sqrt{5}}{4 + 5\sqrt{5}}}}\\

\mathsf{Multiplying\;numerator\;and\;denominator\;with\;4 - 5\sqrt{5},\;we\;get :}\\

\mathsf{:\implies \dfrac{(2 + 3\sqrt{5})(4 - 5\sqrt{5})}{(4 + 5\sqrt{5})(4 - 5\sqrt{5})}}\\\\

★  We know that :-

  • \mathsf\purple{{ (a + b)(a - b) = a² - b²}}\\\\

\mathsf{:\implies \dfrac{(2)(4) - (2)(5\sqrt{5}) + (4)(3\sqrt{5}) - (5\sqrt{5})(3\sqrt{5})}{(4)^2 - (5\sqrt{5})^2}}\\\\

\mathsf\ {\: \: :\implies \dfrac{8 - 10\sqrt{5} + 12\sqrt{5} - (15)(\sqrt{5})^2}{16 - 25(\sqrt{5})^2}}\\\\

\mathsf{\: \: \: \: \: \: \: \: \: \:  \: \: :\implies \dfrac{8 + 2\sqrt{5} - (15)(5)}{16 - 25(5)}}\\\\

\mathsf {\: \: \: \: \: \: \: \:  \: \: \: \: :\implies \dfrac{8 + 2\sqrt{5} - 75}{16 - 125}}\\\\

\mathsf{\: \:\: \: \: \:\:\: \: \: \:  \:  \: \:  \: \:  :\implies \dfrac{2\sqrt{5} - 67}{-109}}\\\\

\mathsf{\: \: \: \: \:\:\: \: \: \: \: \:  \:  \: \: \: :\implies \dfrac{67}{109} - \dfrac{2\sqrt{5}}{109}}\\\\

\sf\purple{{\: \: \: \: \: \:\:   \: \:\: \:  \: \: \: \: \: \: :\implies \dfrac{67}{109} - \dfrac{2\sqrt{5}}{109} = a + b\sqrt{5}}}\\\\

Comparing on both sides, We get :-

  •  \mathsf\purple{{a = \dfrac{67}{109}}}

  •  \mathsf\purple{{b = \dfrac{-2}{109}}}\\\\
Answered by BrainlyRish
59

Given : Both a and b are rational numbers : \sf \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} = a + b \sqrt {5}  \\

Exigency To Find : The value of a and b .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that ,

\qquad \dag\:\:\bigg\lgroup \sf{  \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} = a + b \sqrt {5} }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here ,

\qquad :\implies \bf L.H.S \:\: = \:\: \sf    \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} \\

\qquad :\implies \bf R.H.S \:\: = \:\: \sf   a+b\sqrt {5} \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: L.H.S \::}}\\

\qquad :\implies \bf L.H.S \:\: = \:\: \sf    \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} \\

\qquad :\implies  \:\: \sf    \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} \\

 \:\: \dag \qquad \sf Now , \: By \: \; \bf Rationalizing \: \sf the \: denominator \:: \\

\qquad :\implies  \:\: \sf    \dfrac{ 2+ 3\sqrt{5} }{4 + 5\sqrt {5}} \\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{(4 + 5\sqrt {5}) \times ( 4 - 5\sqrt{5}) } \\

\dag\:\:\sf{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Algebraic \:Indentity \: \:: ( a + b) (a - b) = a^2 - b^2  }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Applying \: this \::}}\\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{(4 + 5\sqrt {5}) \times ( 4 - 5\sqrt{5}) } \\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{(4)^2 - (5\sqrt {5})^2  } \\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{16 - (5\sqrt {5})^2  } \\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{16 - 25(5)  } \\

\qquad :\implies  \:\: \sf    \dfrac{ (2+ 3\sqrt{5} )\times ( 4 - 5\sqrt {5} )}{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{ 2 ( 4 - 5\sqrt {5} ) + 3 \sqrt{5} (4 - 5\sqrt {5}) }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 - 2(5\sqrt {5} ) + 3 \sqrt{5} (4 - 5\sqrt {5}) }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 - 10\sqrt {5}  + 12 \sqrt{5}  - 15(\sqrt {5})^2 }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 - 10\sqrt {5}  + 12 \sqrt{5}  - 15(5) }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 - 10\sqrt {5}  + 12 \sqrt{5}  - 75 }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 + 2 \sqrt{5}  - 75 }{16 - 125  } \\

\qquad :\implies  \:\: \sf    \dfrac{  8 + 2 \sqrt{5}  - 75 }{-109 } \\

\qquad :\implies  \:\: \sf    \dfrac{  -67+  2 \sqrt{5}   }{-109 } \\

\qquad :\implies  \:\: \sf    \dfrac{  -67}{-109}  + \dfrac{ 2 \sqrt{5}   }{-109 } \\

\qquad :\implies  \:\: \sf    \dfrac{  \cancel {-} 67}{\cancel {-}109}  + \dfrac{ 2 \sqrt{5}   }{-109 } \\

[ ( -ve ) negative sign will eliminated from both numerator and Denominator]

\qquad :\implies  \:\: \sf    \dfrac{  67}{109}  + \dfrac{ 2 \sqrt{5}   }{-109 } \\

[ Now , By Shifting ( -ve ) negative sign to numerator . ]

\qquad :\implies  \:\: \sf    \dfrac{  67}{109}  - \dfrac{ 2 \sqrt{5}   }{109 } \\

\qquad :\implies  \:\bf \: L.H.S \::  \sf    \dfrac{  67}{109}  - \dfrac{ 2 \sqrt{5}   }{109 } \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Comparing \: the \: L.H.S \: to\: R.H.S \::}}\\

\qquad :\implies  \:\bf \: L.H.S \::  \sf    \dfrac{  67}{109}  - \dfrac{ 2 \sqrt{5}   }{109 } \\

\qquad :\implies \bf R.H.S \:\: = \:\: \sf   a+b\sqrt {5} \\

⠀⠀⠀⠀⠀⠀We get ,

  •  \bf a \: = \: \dfrac{  67}{109} \:\\
  •  \bf b \: = \: \dfrac{  -2}{109} \:\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:The\:Value \:of\:a \:and \:b \:are\:\bf  \dfrac{  67}{109}\: \&  \:\dfrac{  -2}{109}\:\:\sf \:\: , \:respectively \:.  }}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions