If both a and b are rational numbers, find the values of a and b of the following equality
√5+√3/√5-√3=a+b√15
Answers
Given :
To find :
• The value of a and b .
Solution :
Rationalise the denominator :
Now , compare with a+b√15 we get ,
• a = 4 and b = 1 .
Formula :
Step-by-step explanation:
Given :
\begin{lgathered}\star \: \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = a \: + \: b \sqrt{15} \\\end{lgathered}
⋆
5
−
3
5
+
3
=a+b
15
To find :
• The value of a and b .
Solution :
\begin{lgathered}\implies \: \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \\\end{lgathered}
⟹
5
−
3
5
+
3
Rationalise the denominator :
\begin{lgathered}\implies \: \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \\ \\ \implies \: \frac{ {( \sqrt{5} + \sqrt{3}) }^{2} }{ {( \sqrt{5} })^{2} - ( { \sqrt{3} }) ^{2} } \\ \\ \implies \: \frac{ { \sqrt{5} }^{2} + { \sqrt{3} }^{2} + 2 \sqrt{5} \sqrt{3} }{5 - 3} \\ \\ \implies \: \frac{5 + 3 + 2 \sqrt{15} }{2} \\ \\ \implies \: \frac{8 + 2 \sqrt{15} }{2} \\ \\ \implies \: \frac{ \cancel{2}(4 + \sqrt{15}) }{ \cancel{2}} \\ \\ \implies \: 4 + \sqrt{15}\end{lgathered}
⟹
5
−
3
5
+
3
×
5
+
3
5
+
3
⟹
(
5
)
2
−(
3
)
2
(
5
+
3
)
2
⟹
5−3
5
2
+
3
2
+2
5
3
⟹
2
5+3+2
15
⟹
2
8+2
15
⟹
2
2
(4+
15
)
⟹4+
15
Now , compare with a+b√15 we get ,
• a = 4 and b = 1 .
Formula :
\begin{lgathered}\star \boxed{ \red{\bold{ {(x + y)}^{2} = {x}^{2} + {y}^{2} + 2xy}}} \\ \\ \star \boxed{ \bold { \blue {(x + y)(x - y) = {x}^{2} - {y}^{2} }}}\end{lgathered}
⋆
(x+y)
2
=x
2
+y
2
+2xy
⋆
(x+y)(x−y)=x
2
−y
2