Physics, asked by cheemaprabhleen6, 5 months ago

If both horizontal range and Hmax are equal than find horizontal range?

Answers

Answered by Anonymous
3

Given:

Horizontal range (R) = Maximum height  \sf (H_{max})

To Find:

Horizontal range (R)

Answer:

Horizontal range:

 \boxed{ \bf{R =  \dfrac{ 2{u}^{2}sin \theta cos \theta }{g} }}

Maximum height:

 \boxed{ \bf{H_{max} =  \dfrac{ {u}^{2}  {sin}^{2} \theta }{ 2g} }}

So,

 \rm \implies R = H_{max} \\  \\  \rm \implies  \dfrac{ 2 \cancel{{u}^{2}} \cancel{sin \theta }cos \theta }{ \cancel{g}} =  \dfrac{  \cancel{{u}^{2}  }{sin}^{ \cancel{2}} \theta }{ 2 \cancel{g}}  \\  \\  \rm \implies 2cos \theta =  \dfrac{sin \theta}{2}  \\  \\  \rm \implies  \dfrac{sin \theta}{cos \theta}  = 2 \times 2 \\   \\  \rm \implies tan \theta = 4

Thus,

  \rm sin \theta =  \dfrac{4}{ \sqrt{17} }  \\    \rm cos \theta =  \dfrac{1}{ \sqrt{17} }

By substituting values of sinθ & cosθ in the equation of horizontal range we get:

 \rm \implies R =  \dfrac{ 2{u}^{2} }{g}  \times  \dfrac{4}{ \sqrt{17} }  \times  \dfrac{1}{ \sqrt{17} }  \\  \\  \rm \implies R =   \dfrac{2 {u}^{2} }{10}  \times  \dfrac{4}{17}  \\  \\ \rm \implies R =   \dfrac{8{u}^{2} }{170}  \\  \\ \rm \implies R =   \dfrac{4{u}^{2} }{85}  \: m

 \therefore  \boxed{\mathfrak{Horizontal \ range \ ( R ) =   \dfrac{4{u}^{2} }{85}  \: m}}

Attachments:
Similar questions